亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A family S of convex sets in the plane defines a hypergraph H = (S, E) as follows. Every subfamily S' of S defines a hyperedge of H if and only if there exists a halfspace h that fully contains S' , and no other set of S is fully contained in h. In this case, we say that h realizes S'. We say a set S is shattered, if all its subsets are realized. The VC-dimension of a hypergraph H is the size of the largest shattered set. We show that the VC-dimension for pairwise disjoint convex sets in the plane is bounded by 3, and this is tight. In contrast, we show the VC-dimension of convex sets in the plane (not necessarily disjoint) is unbounded. We provide a quadratic lower bound in the number of pairs of intersecting sets in a shattered family of convex sets in the plane. We also show that the VC-dimension is unbounded for pairwise disjoint convex sets in R^d , for d > 2. We focus on, possibly intersecting, segments in the plane and determine that the VC-dimension is always at most 5. And this is tight, as we construct a set of five segments that can be shattered. We give two exemplary applications. One for a geometric set cover problem and one for a range-query data structure problem, to motivate our findings.

相關內容

We present symbolic and numerical methods for computing Poisson brackets on the spaces of measures with positive densities of the plane, the 2-torus, and the 2-sphere. We apply our methods to compute symplectic areas of finite regions for the case of the 2-sphere, including an explicit example for Gaussian measures with positive densities.

$d$-dimensional efficient range-summability ($d$D-ERS) of a long list of random variables (RVs) is a fundamental algorithmic problem that has applications to two important families of database problems, namely, fast approximate wavelet tracking (FAWT) on data streams and approximately answering range-sum queries over a data cube. In this work, we propose a novel solution framework to $d$D-ERS for $d>1$ on RVs that have Gaussian or Poisson distribution. Our solutions are the first ones that compute any rectangular range-sum of the RVs in polylogarithmic time. Furthermore, we develop a novel $k$-wise independence theory that allows our $d$D-ERS solutions to have both high computational efficiencies and strong provable independence guarantees. Finally, we generalize existing DST-based solutions for 1D-ERS to 2D, and characterize a sufficient and likely necessary condition on the target distribution for this generalization to be feasible.

Test of independence is of fundamental importance in modern data analysis, with broad applications in variable selection, graphical models, and causal inference. When the data is high dimensional and the potential dependence signal is sparse, independence testing becomes very challenging without distributional or structural assumptions. In this paper we propose a general framework for independence testing by first fitting a classifier that distinguishes the joint and product distributions, and then testing the significance of the fitted classifier. This framework allows us to borrow the strength of the most advanced classification algorithms developed from the modern machine learning community, making it applicable to high dimensional, complex data. By combining a sample split and a fixed permutation, our test statistic has a universal, fixed Gaussian null distribution that is independent of the underlying data distribution. Extensive simulations demonstrate the advantages of the newly proposed test compared with existing methods. We further apply the new test to a single cell data set to test the independence between two types of single cell sequencing measurements, whose high dimensionality and sparsity make existing methods hard to apply.

In this note we disprove a conjecture of Kuzmin and Warmuth claiming that every family whose VC-dimension is at most d admits an unlabeled compression scheme to a sample of size at most d. We also study the unlabeled compression schemes of the joins of some families and conjecture that these give a larger gap between the VC-dimension and the size of the smallest unlabeled compression scheme for them.

This paper makes mathematically precise the idea that conditional probabilities are analogous to path liftings in geometry. The idea of lifting is modelled in terms of the category-theoretic concept of a lens, which can be interpreted as a consistent choice of arrow liftings. The category we study is the one of probability measures over a given standard Borel space, with morphisms given by the couplings, or transport plans. The geometrical picture is even more apparent once we equip the arrows of the category with weights, which one can interpret as "lengths" or "costs", forming a so-called weighted category, which unifies several concepts of category theory and metric geometry. Indeed, we show that the weighted version of a lens is tightly connected to the notion of submetry in geometry. Every weighted category gives rise to a pseudo-quasimetric space via optimization over the arrows. In particular, Wasserstein spaces can be obtained from the weighted categories of probability measures and their couplings, with the weight of a coupling given by its cost. In this case, conditionals allow one to form weighted lenses, which one can interpret as "lifting transport plans, while preserving their cost".

This paper studies the $\tau$-coherence of a (n x p)-observation matrix in a Gaussian framework. The $\tau$-coherence is defined as the largest magnitude outside a diagonal bandwith of size $\tau$ of the empirical correlation coefficients associated to our observations. Using the Chen-Stein method we derive the limiting law of the normalized coherence and show the convergence towards a Gumbel distribution. We generalize here the results of Cai and Jiang [CJ11a]. We assume that the covariance matrix of the model is bandwise. Moreover, we provide numerical considerations highlighting issues from the high dimension hypotheses. We numerically illustrate the asymptotic behaviour of the coherence with Monte-Carlo experiment using a HPC splitting strategy for high dimensional correlation matrices.

We provide explicit bounds on the number of sample points required to estimate tangent spaces and intrinsic dimensions of (smooth, compact) Euclidean submanifolds via local principal component analysis. Our approach directly estimates covariance matrices locally, which simultaneously allows estimating both the tangent spaces and the intrinsic dimension of a manifold. The key arguments involve a matrix concentration inequality, a Wasserstein bound for flattening a manifold, and a Lipschitz relation for the covariance matrix with respect to the Wasserstein distance.

Gaussian Processes (GPs) provide powerful probabilistic frameworks for interpolation, forecasting, and smoothing, but have been hampered by computational scaling issues. Here we investigate data sampled on one dimension (e.g., a scalar or vector time series sampled at arbitrarily-spaced intervals), for which state-space models are popular due to their linearly-scaling computational costs. It has long been conjectured that state-space models are general, able to approximate any one-dimensional GP. We provide the first general proof of this conjecture, showing that any stationary GP on one dimension with vector-valued observations governed by a Lebesgue-integrable continuous kernel can be approximated to any desired precision using a specifically-chosen state-space model: the Latent Exponentially Generated (LEG) family. This new family offers several advantages compared to the general state-space model: it is always stable (no unbounded growth), the covariance can be computed in closed form, and its parameter space is unconstrained (allowing straightforward estimation via gradient descent). The theorem's proof also draws connections to Spectral Mixture Kernels, providing insight about this popular family of kernels. We develop parallelized algorithms for performing inference and learning in the LEG model, test the algorithm on real and synthetic data, and demonstrate scaling to datasets with billions of samples.

This article derives closed-form parametric formulas for the Minkowski sums of convex bodies in d-dimensional Euclidean space with boundaries that are smooth and have all positive sectional curvatures at every point. Under these conditions, there is a unique relationship between the position of each boundary point and the surface normal. The main results are presented as two theorems. The first theorem directly parameterizes the Minkowski sums using the unit normal vector at each surface point. Although simple to express mathematically, such a parameterization is not always practical to obtain computationally. Therefore, the second theorem derives a more useful parametric closed-form expression using the gradient that is not normalized. In the special case of two ellipsoids, the proposed expressions are identical to those derived previously using geometric interpretations. In order to examine the results, numerical validations and comparisons of the Minkowski sums between two superquadric bodies are conducted. Applications to generate configuration space obstacles in motion planning problems and to improve optimization-based collision detection algorithms are introduced and demonstrated.

We investigate how the final parameters found by stochastic gradient descent are influenced by over-parameterization. We generate families of models by increasing the number of channels in a base network, and then perform a large hyper-parameter search to study how the test error depends on learning rate, batch size, and network width. We find that the optimal SGD hyper-parameters are determined by a "normalized noise scale," which is a function of the batch size, learning rate, and initialization conditions. In the absence of batch normalization, the optimal normalized noise scale is directly proportional to width. Wider networks, with their higher optimal noise scale, also achieve higher test accuracy. These observations hold for MLPs, ConvNets, and ResNets, and for two different parameterization schemes ("Standard" and "NTK"). We observe a similar trend with batch normalization for ResNets. Surprisingly, since the largest stable learning rate is bounded, the largest batch size consistent with the optimal normalized noise scale decreases as the width increases.

北京阿比特科技有限公司