Two widely considered decentralized learning algorithms are Gossip and random walk-based learning. Gossip algorithms (both synchronous and asynchronous versions) suffer from high communication cost, while random-walk based learning experiences increased convergence time. In this paper, we design a fast and communication-efficient asynchronous decentralized learning mechanism DIGEST by taking advantage of both Gossip and random-walk ideas, and focusing on stochastic gradient descent (SGD). DIGEST is an asynchronous decentralized algorithm building on local-SGD algorithms, which are originally designed for communication efficient centralized learning. We design both single-stream and multi-stream DIGEST, where the communication overhead may increase when the number of streams increases, and there is a convergence and communication overhead trade-off which can be leveraged. We analyze the convergence of single- and multi-stream DIGEST, and prove that both algorithms approach to the optimal solution asymptotically for both iid and non-iid data distributions. We evaluate the performance of single- and multi-stream DIGEST for logistic regression and a deep neural network ResNet20. The simulation results confirm that multi-stream DIGEST has nice convergence properties; i.e., its convergence time is better than or comparable to the baselines in iid setting, and outperforms the baselines in non-iid setting.
Histopathological analysis of Whole Slide Images (WSIs) has seen a surge in the utilization of deep learning methods, particularly Convolutional Neural Networks (CNNs). However, CNNs often fall short in capturing the intricate spatial dependencies inherent in WSIs. Graph Neural Networks (GNNs) present a promising alternative, adept at directly modeling pairwise interactions and effectively discerning the topological tissue and cellular structures within WSIs. Recognizing the pressing need for deep learning techniques that harness the topological structure of WSIs, the application of GNNs in histopathology has experienced rapid growth. In this comprehensive review, we survey GNNs in histopathology, discuss their applications, and explore emerging trends that pave the way for future advancements in the field. We begin by elucidating the fundamentals of GNNs and their potential applications in histopathology. Leveraging quantitative literature analysis, we identify four emerging trends: Hierarchical GNNs, Adaptive Graph Structure Learning, Multimodal GNNs, and Higher-order GNNs. Through an in-depth exploration of these trends, we offer insights into the evolving landscape of GNNs in histopathological analysis. Based on our findings, we propose future directions to propel the field forward. Our analysis serves to guide researchers and practitioners towards innovative approaches and methodologies, fostering advancements in histopathological analysis through the lens of graph neural networks.
Recent advances in deep learning have mainly relied on Transformers due to their data dependency and ability to learn at scale. The attention module in these architectures, however, exhibits quadratic time and space in input size, limiting their scalability for long-sequence modeling. State Space Models (SSMs), and more specifically Selective SSMs (S6), with efficient hardware-aware implementation, have shown promising potential for long causal sequence modeling. They, however, use separate blocks for each channel and fail to filter irrelevant channels and capture inter-channel dependencies. Natural attempt to mix information across channels using MLP, attention, or SSMs results in further instability in the training of SSMs for large networks and/or nearly double the number of parameters. We present the MambaMixer block, a new SSM-based architecture with data-dependent weights that uses a dual selection mechanism across tokens and channels-called Selective Token and Channel Mixer. To mitigate doubling the number of parameters, we present a new non-causal heuristic of the S6 block with a hardware-friendly implementation. We further present an efficient variant of MambaMixer, called QSMixer, that mixes information along both sequence and embedding dimensions. As a proof of concept, we design Vision MambaMixer (ViM2) and Vision QSMixer (ViQS) architectures. To enhance their ability to capture spatial information in images, we present Switch of Scans (SoS) that dynamically uses a set of useful image scans to traverse image patches. We evaluate the performance of our methods in image classification, segmentation, and object detection. Our results underline the importance of selectively mixing across both tokens and channels and show the competitive (resp. superior) performance of our methods with well-established vision models (resp. SSM-based models).
Recently, multiple applications of machine learning have been introduced. They include various possibilities arising when image analysis methods are applied to, broadly understood, video streams. In this context, a novel tool, developed for academic educators to enhance the teaching process by automating, summarizing, and offering prompt feedback on conducting lectures, has been developed. The implemented prototype utilizes machine learning-based techniques to recognise selected didactic and behavioural teachers' features within lecture video recordings. Specifically, users (teachers) can upload their lecture videos, which are preprocessed and analysed using machine learning models. Next, users can view summaries of recognized didactic features through interactive charts and tables. Additionally, stored ML-based prediction results support comparisons between lectures based on their didactic content. In the developed application text-based models trained on lecture transcriptions, with enhancements to the transcription quality, by adopting an automatic speech recognition solution are applied. Furthermore, the system offers flexibility for (future) integration of new/additional machine-learning models and software modules for image and video analysis.
Safe learning is central to AI-enabled robots where a single failure may lead to catastrophic results. Barrier-based method is one of the dominant approaches for safe robot learning. However, this method is not scalable, hard to train, and tends to generate unstable signals under noisy inputs that are challenging to be deployed for robots. To address these challenges, we propose a novel Attention BarrierNet (ABNet) that is scalable to build larger foundational safe models in an incremental manner. Each head of BarrierNet in the ABNet could learn safe robot control policies from different features and focus on specific part of the observation. In this way, we do not need to one-shotly construct a large model for complex tasks, which significantly facilitates the training of the model while ensuring its stable output. Most importantly, we can still formally prove the safety guarantees of the ABNet. We demonstrate the strength of ABNet in 2D robot obstacle avoidance, safe robot manipulation, and vision-based end-to-end autonomous driving, with results showing much better robustness and guarantees over existing models.
In multivariate time series (MTS) forecasting, existing state-of-the-art deep learning approaches tend to focus on autoregressive formulations and overlook the information within exogenous indicators. To address this limitation, we present DeformTime, a neural network architecture that attempts to capture correlated temporal patterns from the input space, and hence, improve forecasting accuracy. It deploys two core operations performed by deformable attention blocks (DABs): learning dependencies across variables from different time steps (variable DAB), and preserving temporal dependencies in data from previous time steps (temporal DAB). Input data transformation is explicitly designed to enhance learning from the deformed series of information while passing through a DAB. We conduct extensive experiments on 6 MTS data sets, using previously established benchmarks as well as challenging infectious disease modelling tasks with more exogenous variables. The results demonstrate that DeformTime improves accuracy against previous competitive methods across the vast majority of MTS forecasting tasks, reducing the mean absolute error by 10% on average. Notably, performance gains remain consistent across longer forecasting horizons.
In the realm of education, both independent learning and group learning are esteemed as the most classic paradigms. The former allows learners to self-direct their studies, while the latter is typically characterized by teacher-directed scenarios. Recent studies in the field of intelligent education have leveraged deep temporal models to trace the learning process, capturing the dynamics of students' knowledge states, and have achieved remarkable performance. However, existing approaches have primarily focused on modeling the independent learning process, with the group learning paradigm receiving less attention. Moreover, the reciprocal effect between the two learning processes, especially their combined potential to foster holistic student development, remains inadequately explored. To this end, in this paper, we propose RIGL, a unified Reciprocal model to trace knowledge states at both the individual and group levels, drawing from the Independent and Group Learning processes. Specifically, we first introduce a time frame-aware reciprocal embedding module to concurrently model both student and group response interactions across various time frames. Subsequently, we employ reciprocal enhanced learning modeling to fully exploit the comprehensive and complementary information between the two behaviors. Furthermore, we design a relation-guided temporal attentive network, comprised of dynamic graph modeling coupled with a temporal self-attention mechanism. It is used to delve into the dynamic influence of individual and group interactions throughout the learning processes. Conclusively, we introduce a bias-aware contrastive learning module to bolster the stability of the model's training. Extensive experiments on four real-world educational datasets clearly demonstrate the effectiveness of the proposed RIGL model.
Graph Neural Networks (GNNs) have emerged as powerful representation learning tools for capturing complex dependencies within diverse graph-structured data. Despite their success in a wide range of graph mining tasks, GNNs have raised serious concerns regarding their trustworthiness, including susceptibility to distribution shift, biases towards certain populations, and lack of explainability. Recently, integrating causal learning techniques into GNNs has sparked numerous ground-breaking studies since many GNN trustworthiness issues can be alleviated by capturing the underlying data causality rather than superficial correlations. In this survey, we comprehensively review recent research efforts on Causality-Inspired GNNs (CIGNNs). Specifically, we first employ causal tools to analyze the primary trustworthiness risks of existing GNNs, underscoring the necessity for GNNs to comprehend the causal mechanisms within graph data. Moreover, we introduce a taxonomy of CIGNNs based on the type of causal learning capability they are equipped with, i.e., causal reasoning and causal representation learning. Besides, we systematically introduce typical methods within each category and discuss how they mitigate trustworthiness risks. Finally, we summarize useful resources and discuss several future directions, hoping to shed light on new research opportunities in this emerging field. The representative papers, along with open-source data and codes, are available in //github.com/usail-hkust/Causality-Inspired-GNNs.
The incredible development of federated learning (FL) has benefited various tasks in the domains of computer vision and natural language processing, and the existing frameworks such as TFF and FATE has made the deployment easy in real-world applications. However, federated graph learning (FGL), even though graph data are prevalent, has not been well supported due to its unique characteristics and requirements. The lack of FGL-related framework increases the efforts for accomplishing reproducible research and deploying in real-world applications. Motivated by such strong demand, in this paper, we first discuss the challenges in creating an easy-to-use FGL package and accordingly present our implemented package FederatedScope-GNN (FS-G), which provides (1) a unified view for modularizing and expressing FGL algorithms; (2) comprehensive DataZoo and ModelZoo for out-of-the-box FGL capability; (3) an efficient model auto-tuning component; and (4) off-the-shelf privacy attack and defense abilities. We validate the effectiveness of FS-G by conducting extensive experiments, which simultaneously gains many valuable insights about FGL for the community. Moreover, we employ FS-G to serve the FGL application in real-world E-commerce scenarios, where the attained improvements indicate great potential business benefits. We publicly release FS-G, as submodules of FederatedScope, at //github.com/alibaba/FederatedScope to promote FGL's research and enable broad applications that would otherwise be infeasible due to the lack of a dedicated package.
What matters for contrastive learning? We argue that contrastive learning heavily relies on informative features, or "hard" (positive or negative) features. Early works include more informative features by applying complex data augmentations and large batch size or memory bank, and recent works design elaborate sampling approaches to explore informative features. The key challenge toward exploring such features is that the source multi-view data is generated by applying random data augmentations, making it infeasible to always add useful information in the augmented data. Consequently, the informativeness of features learned from such augmented data is limited. In response, we propose to directly augment the features in latent space, thereby learning discriminative representations without a large amount of input data. We perform a meta learning technique to build the augmentation generator that updates its network parameters by considering the performance of the encoder. However, insufficient input data may lead the encoder to learn collapsed features and therefore malfunction the augmentation generator. A new margin-injected regularization is further added in the objective function to avoid the encoder learning a degenerate mapping. To contrast all features in one gradient back-propagation step, we adopt the proposed optimization-driven unified contrastive loss instead of the conventional contrastive loss. Empirically, our method achieves state-of-the-art results on several benchmark datasets.
Deep learning has shown great potential for modeling the physical dynamics of complex particle systems such as fluids (in Lagrangian descriptions). Existing approaches, however, require the supervision of consecutive particle properties, including positions and velocities. In this paper, we consider a partially observable scenario known as fluid dynamics grounding, that is, inferring the state transitions and interactions within the fluid particle systems from sequential visual observations of the fluid surface. We propose a differentiable two-stage network named NeuroFluid. Our approach consists of (i) a particle-driven neural renderer, which involves fluid physical properties into the volume rendering function, and (ii) a particle transition model optimized to reduce the differences between the rendered and the observed images. NeuroFluid provides the first solution to unsupervised learning of particle-based fluid dynamics by training these two models jointly. It is shown to reasonably estimate the underlying physics of fluids with different initial shapes, viscosity, and densities. It is a potential alternative approach to understanding complex fluid mechanics, such as turbulence, that are difficult to model using traditional methods of mathematical physics.