亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

People use the Internet to learn new skills, stay connected with friends, and find new communities to engage with. Live streaming platforms like Twitch.tv, YouTube Live, and Facebook Gaming provide a place where all three of these activities intersect and enable users to live-stream themselves playing a video game or live-coding software and game development, as well as the ability to participate in chat while watching someone else engage in an activity. Through fifteen interviews with software and game development streamers, we investigate why people choose to stream themselves programming and if they perceive themselves improving their programming skills by live streaming. We found that the motivations to stream included accountability, self-education, community, and visibility of the streamers' work, and streamers perceived a positive influence on their ability to write source code. Our findings implicate that alternative learning methods like live streaming programming are a beneficial tool in the age of the virtual classroom. This work also contributes to and extends research efforts surrounding educational live streaming and collaboration in developer communities.

相關內容

Systems with artificial intelligence components, so-called AI-based systems, have gained considerable attention recently. However, many organizations have issues with achieving production readiness with such systems. As a means to improve certain software quality attributes and to address frequently occurring problems, design patterns represent proven solution blueprints. While new patterns for AI-based systems are emerging, existing patterns have also been adapted to this new context. The goal of this study is to provide an overview of design patterns for AI-based systems, both new and adapted ones. We want to collect and categorize patterns, and make them accessible for researchers and practitioners. To this end, we first performed a multivocal literature review (MLR) to collect design patterns used with AI-based systems. We then integrated the created pattern collection into a web-based pattern repository to make the patterns browsable and easy to find. As a result, we selected 51 resources (35 white and 16 gray ones), from which we extracted 70 unique patterns used for AI-based systems. Among these are 34 new patterns and 36 traditional ones that have been adapted to this context. Popular pattern categories include "architecture" (25 patterns), "deployment" (16), "implementation" (9), or "security & safety" (9). While some patterns with four or more mentions already seem established, the majority of patterns have only been mentioned once or twice (51 patterns). Our results in this emerging field can be used by researchers as a foundation for follow-up studies and by practitioners to discover relevant patterns for informing the design of AI-based systems.

We propose DyGFormer, a new Transformer-based architecture for dynamic graph learning that solely learns from the sequences of nodes' historical first-hop interactions. DyGFormer incorporates two distinct designs: a neighbor co-occurrence encoding scheme that explores the correlations of the source node and destination node based on their sequences; a patching technique that divides each sequence into multiple patches and feeds them to Transformer, allowing the model to effectively and efficiently benefit from longer histories. We also introduce DyGLib, a unified library with standard training pipelines, extensible coding interfaces, and comprehensive evaluating protocols to promote reproducible, scalable, and credible dynamic graph learning research. By performing extensive experiments on thirteen datasets from various domains for transductive/inductive dynamic link prediction and dynamic node classification tasks, we observe that: DyGFormer achieves state-of-the-art performance on most of the datasets, demonstrating the effectiveness of capturing nodes' correlations and long-term temporal dependencies; the results of baselines vary across different datasets and some findings are inconsistent with previous reports, which may be caused by their diverse pipelines and problematic implementations. We hope our work can provide new insights and facilitate the development of the dynamic graph learning field. All the resources including datasets, data loaders, algorithms, and executing scripts are publicly available at //github.com/yule-BUAA/DyGLib.

Quantum computing systems rely on the principles of quantum mechanics to perform a multitude of computationally challenging tasks more efficiently than their classical counterparts. The architecture of software-intensive systems can empower architects who can leverage architecture-centric processes, practices, description languages, etc., to model, develop, and evolve quantum computing software (quantum software for short) at higher abstraction levels. We conducted a systematic literature review (SLR) to investigate (i) architectural process, (ii) modeling notations, (iii) architecture design patterns, (iv) tool support, and (iv) challenging factors for quantum software architecture. Results of the SLR indicate that quantum software represents a new genre of software-intensive systems; however, existing processes and notations can be tailored to derive the architecting activities and develop modeling languages for quantum software. Quantum bits (Qubits) mapped to Quantum gates (Qugates) can be represented as architectural components and connectors that implement quantum software. Tool-chains can incorporate reusable knowledge and human roles (e.g., quantum domain engineers, quantum code developers) to automate and customize the architectural process. Results of this SLR can facilitate researchers and practitioners to develop new hypotheses to be tested, derive reference architectures, and leverage architecture-centric principles and practices to engineer emerging and next generations of quantum software.

Federated learning, which allows multiple client devices in a network to jointly train a machine learning model without direct exposure of clients' data, is an emerging distributed learning technique due to its nature of privacy preservation. However, it has been found that models trained with federated learning usually have worse performance than their counterparts trained in the standard centralized learning mode, especially when the training data is imbalanced. In the context of federated learning, data imbalance may occur either locally one one client device, or globally across many devices. The complexity of different types of data imbalance has posed challenges to the development of federated learning technique, especially considering the need of relieving data imbalance issue and preserving data privacy at the same time. Therefore, in the literature, many attempts have been made to handle class imbalance in federated learning. In this paper, we present a detailed review of recent advancements along this line. We first introduce various types of class imbalance in federated learning, after which we review existing methods for estimating the extent of class imbalance without the need of knowing the actual data to preserve data privacy. After that, we discuss existing methods for handling class imbalance in FL, where the advantages and disadvantages of the these approaches are discussed. We also summarize common evaluation metrics for class imbalanced tasks, and point out potential future directions.

Recent research indicates that most post-secondary students in North America "felt overwhelming anxiety" in the past few years, negatively affecting well-being and academic performance. Further research revealed that other emotions, biases, perceptions, and negative thoughts, can similarly affect student academic performance. To address this problem, we classify these counterproductive mindsets, including anxiety, into Scarcity Mindset, a self-limiting perspective that appropriates cognitive bandwidth required for essential processes like learning in favour of addressing more critical needs or perceived insufficiencies. Through a multi-disciplinary literature analysis of ideas in cognitive science, learning theories and mindsets, and current technology approaches that are suited to address the limitations of scarcity thinking, we identify strategies to help transition students to a more positive Abundance Mindsets. We demonstrate that these priming intervention strategies can transfer to leading-edge digital environments, particularly Virtual Reality (VR). Offering further insights into the findings of our two previously presented studies, we argue that priming interventions related to preparatory activities and the context priming are transferable to virtual reality environments. As such, building on our multidisciplinary research insights, we propose a comprehensive priming model that exploits priming techniques in an iterative process called Cyclical Priming Methodology (CPM). These intervention strategies can focus on student preparation, motivation, reflection, the context of the learning environment, and other aspects of the learning process. Building on CPM, we further propose a technology implementation within VR called Virtual Reality Experience Priming (VREP) and discuss the process to embed CPM/VREP activities within the Experiential Learning Theory (ELT) cycle.

Recent advances of data-driven machine learning have revolutionized fields like computer vision, reinforcement learning, and many scientific and engineering domains. In many real-world and scientific problems, systems that generate data are governed by physical laws. Recent work shows that it provides potential benefits for machine learning models by incorporating the physical prior and collected data, which makes the intersection of machine learning and physics become a prevailing paradigm. In this survey, we present this learning paradigm called Physics-Informed Machine Learning (PIML) which is to build a model that leverages empirical data and available physical prior knowledge to improve performance on a set of tasks that involve a physical mechanism. We systematically review the recent development of physics-informed machine learning from three perspectives of machine learning tasks, representation of physical prior, and methods for incorporating physical prior. We also propose several important open research problems based on the current trends in the field. We argue that encoding different forms of physical prior into model architectures, optimizers, inference algorithms, and significant domain-specific applications like inverse engineering design and robotic control is far from fully being explored in the field of physics-informed machine learning. We believe that this study will encourage researchers in the machine learning community to actively participate in the interdisciplinary research of physics-informed machine learning.

Games and simulators can be a valuable platform to execute complex multi-agent, multiplayer, imperfect information scenarios with significant parallels to military applications: multiple participants manage resources and make decisions that command assets to secure specific areas of a map or neutralize opposing forces. These characteristics have attracted the artificial intelligence (AI) community by supporting development of algorithms with complex benchmarks and the capability to rapidly iterate over new ideas. The success of artificial intelligence algorithms in real-time strategy games such as StarCraft II have also attracted the attention of the military research community aiming to explore similar techniques in military counterpart scenarios. Aiming to bridge the connection between games and military applications, this work discusses past and current efforts on how games and simulators, together with the artificial intelligence algorithms, have been adapted to simulate certain aspects of military missions and how they might impact the future battlefield. This paper also investigates how advances in virtual reality and visual augmentation systems open new possibilities in human interfaces with gaming platforms and their military parallels.

It has been a long time that computer architecture and systems are optimized to enable efficient execution of machine learning (ML) algorithms or models. Now, it is time to reconsider the relationship between ML and systems, and let ML transform the way that computer architecture and systems are designed. This embraces a twofold meaning: the improvement of designers' productivity, and the completion of the virtuous cycle. In this paper, we present a comprehensive review of work that applies ML for system design, which can be grouped into two major categories, ML-based modelling that involves predictions of performance metrics or some other criteria of interest, and ML-based design methodology that directly leverages ML as the design tool. For ML-based modelling, we discuss existing studies based on their target level of system, ranging from the circuit level to the architecture/system level. For ML-based design methodology, we follow a bottom-up path to review current work, with a scope of (micro-)architecture design (memory, branch prediction, NoC), coordination between architecture/system and workload (resource allocation and management, data center management, and security), compiler, and design automation. We further provide a future vision of opportunities and potential directions, and envision that applying ML for computer architecture and systems would thrive in the community.

Over the past few years, we have seen fundamental breakthroughs in core problems in machine learning, largely driven by advances in deep neural networks. At the same time, the amount of data collected in a wide array of scientific domains is dramatically increasing in both size and complexity. Taken together, this suggests many exciting opportunities for deep learning applications in scientific settings. But a significant challenge to this is simply knowing where to start. The sheer breadth and diversity of different deep learning techniques makes it difficult to determine what scientific problems might be most amenable to these methods, or which specific combination of methods might offer the most promising first approach. In this survey, we focus on addressing this central issue, providing an overview of many widely used deep learning models, spanning visual, sequential and graph structured data, associated tasks and different training methods, along with techniques to use deep learning with less data and better interpret these complex models --- two central considerations for many scientific use cases. We also include overviews of the full design process, implementation tips, and links to a plethora of tutorials, research summaries and open-sourced deep learning pipelines and pretrained models, developed by the community. We hope that this survey will help accelerate the use of deep learning across different scientific domains.

In the last years, Artificial Intelligence (AI) has achieved a notable momentum that may deliver the best of expectations over many application sectors across the field. For this to occur, the entire community stands in front of the barrier of explainability, an inherent problem of AI techniques brought by sub-symbolism (e.g. ensembles or Deep Neural Networks) that were not present in the last hype of AI. Paradigms underlying this problem fall within the so-called eXplainable AI (XAI) field, which is acknowledged as a crucial feature for the practical deployment of AI models. This overview examines the existing literature in the field of XAI, including a prospect toward what is yet to be reached. We summarize previous efforts to define explainability in Machine Learning, establishing a novel definition that covers prior conceptual propositions with a major focus on the audience for which explainability is sought. We then propose and discuss about a taxonomy of recent contributions related to the explainability of different Machine Learning models, including those aimed at Deep Learning methods for which a second taxonomy is built. This literature analysis serves as the background for a series of challenges faced by XAI, such as the crossroads between data fusion and explainability. Our prospects lead toward the concept of Responsible Artificial Intelligence, namely, a methodology for the large-scale implementation of AI methods in real organizations with fairness, model explainability and accountability at its core. Our ultimate goal is to provide newcomers to XAI with a reference material in order to stimulate future research advances, but also to encourage experts and professionals from other disciplines to embrace the benefits of AI in their activity sectors, without any prior bias for its lack of interpretability.

北京阿比特科技有限公司