亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Seismic imaging is the numerical process of creating a volumetric representation of the subsurface geological structures from elastic waves recorded at the surface of the Earth. As such, it is widely utilized in the energy and construction sectors for applications ranging from oil and gas prospection, to geothermal production and carbon capture and storage monitoring, to geotechnical assessment of infrastructures. Extracting quantitative information from seismic recordings, such as an acoustic impedance model, is however a highly ill-posed inverse problem, due to the band-limited and noisy nature of the data. This paper introduces IntraSeismic, a novel hybrid seismic inversion method that seamlessly combines coordinate-based learning with the physics of the post-stack modeling operator. Key features of IntraSeismic are i) unparalleled performance in 2D and 3D post-stack seismic inversion, ii) rapid convergence rates, iii) ability to seamlessly include hard constraints (i.e., well data) and perform uncertainty quantification, and iv) potential data compression and fast randomized access to portions of the inverted model. Synthetic and field data applications of IntraSeismic are presented to validate the effectiveness of the proposed method.

相關內容

Constant (naive) imputation is still widely used in practice as this is a first easy-to-use technique to deal with missing data. Yet, this simple method could be expected to induce a large bias for prediction purposes, as the imputed input may strongly differ from the true underlying data. However, recent works suggest that this bias is low in the context of high-dimensional linear predictors when data is supposed to be missing completely at random (MCAR). This paper completes the picture for linear predictors by confirming the intuition that the bias is negligible and that surprisingly naive imputation also remains relevant in very low dimension.To this aim, we consider a unique underlying random features model, which offers a rigorous framework for studying predictive performances, whilst the dimension of the observed features varies.Building on these theoretical results, we establish finite-sample bounds on stochastic gradient (SGD) predictors applied to zero-imputed data, a strategy particularly well suited for large-scale learning.If the MCAR assumption appears to be strong, we show that similar favorable behaviors occur for more complex missing data scenarios.

We consider the estimation of the cumulative hazard function, and equivalently the distribution function, with censored data under a setup that preserves the privacy of the survival database. This is done through a $\alpha$-locally differentially private mechanism for the failure indicators and by proposing a non-parametric kernel estimator for the cumulative hazard function that remains consistent under the privatization. Under mild conditions, we also prove lowers bounds for the minimax rates of convergence and show that estimator is minimax optimal under a well-chosen bandwidth.

Finding suitable preconditioners to accelerate iterative solution methods, such as the conjugate gradient method, is an active area of research. In this paper, we develop a computationally efficient data-driven approach to replace the typically hand-engineered algorithms with neural networks. Optimizing the condition number of the linear system directly is computationally infeasible. Instead, our method generates an incomplete factorization of the matrix and is, therefore, referred to as neural incomplete factorization (NeuralIF). For efficient training, we utilize a stochastic approximation of the Frobenius loss which only requires matrix-vector multiplications. At the core of our method is a novel messagepassing block, inspired by sparse matrix theory, that aligns with the objective of finding a sparse factorization of the matrix. By replacing conventional preconditioners used within the conjugate gradient method by data-driven models based on graph neural networks, we accelerate the iterative solving procedure. We evaluate our proposed method on both a synthetic and a real-world problem arising from scientific computing and show its ability to reduce the solving time while remaining computationally efficient.

We propose a new class of finite element approximations to ideal compressible magnetohydrody- namic equations in smooth regime. Following variational approximations developed for fluid models in the last decade, our discretizations are built via a discrete variational principle mimicking the continuous Euler-Poincare principle, and to further exploit the geometrical structure of the prob- lem, vector fields are represented by their action as Lie derivatives on differential forms of any degree. The resulting semi-discrete approximations are shown to conserve the total mass, entropy and energy of the solutions for a wide class of finite element approximations. In addition, the divergence-free nature of the magnetic field is preserved in a pointwise sense and a time discretiza- tion is proposed, preserving those invariants and giving a reversible scheme at the fully discrete level. Numerical simulations are conducted to verify the accuracy of our approach and its ability to preserve the invariants for several test problems.

Building prediction models from mass-spectrometry data is challenging due to the abundance of correlated features with varying degrees of zero-inflation, leading to a common interest in reducing the features to a concise predictor set with good predictive performance. In this study, we formally established and examined regularized regression approaches, designed to address zero-inflated and correlated predictors. In particular, we describe a novel two-stage regularized regression approach (ridge-garrote) explicitly modelling zero-inflated predictors using two component variables, comprising a ridge estimator in the first stage and subsequently applying a nonnegative garrote estimator in the second stage. We contrasted ridge-garrote with one-stage methods (ridge, lasso) and other two-stage regularized regression approaches (lasso-ridge, ridge-lasso) for zero-inflated predictors. We assessed the predictive performance and predictor selection properties of these methods in a comparative simulation study and a real-data case study to predict kidney function using peptidomic features derived from mass-spectrometry. In the simulation study, the predictive performance of all assessed approaches was comparable, yet the ridge-garrote approach consistently selected more parsimonious models compared to its competitors in most scenarios. While lasso-ridge achieved higher predictive accuracy than its competitors, it exhibited high variability in the number of selected predictors. Ridge-lasso exhibited slightly superior predictive accuracy than ridge-garrote but at the expense of selecting more noise predictors. Overall, ridge emerged as a favourable option when variable selection is not a primary concern, while ridge-garrote demonstrated notable practical utility in selecting a parsimonious set of predictors, with only minimal compromise in predictive accuracy.

Motivated by the desire to understand stochastic algorithms for nonconvex optimization that are robust to their hyperparameter choices, we analyze a mini-batched prox-linear iterative algorithm for the problem of recovering an unknown rank-1 matrix from rank-1 Gaussian measurements corrupted by noise. We derive a deterministic recursion that predicts the error of this method and show, using a non-asymptotic framework, that this prediction is accurate for any batch-size and a large range of step-sizes. In particular, our analysis reveals that this method, though stochastic, converges linearly from a local initialization with a fixed step-size to a statistical error floor. Our analysis also exposes how the batch-size, step-size, and noise level affect the (linear) convergence rate and the eventual statistical estimation error, and we demonstrate how to use our deterministic predictions to perform hyperparameter tuning (e.g. step-size and batch-size selection) without ever running the method. On a technical level, our analysis is enabled in part by showing that the fluctuations of the empirical iterates around our deterministic predictions scale with the error of the previous iterate.

A rectangulation is a decomposition of a rectangle into finitely many rectangles. Via natural equivalence relations, rectangulations can be seen as combinatorial objects with a rich structure, with links to lattice congruences, flip graphs, polytopes, lattice paths, Hopf algebras, etc. In this paper, we first revisit the structure of the respective equivalence classes: weak rectangulations that preserve rectangle-segment adjacencies, and strong rectangulations that preserve rectangle-rectangle adjacencies. We thoroughly investigate posets defined by adjacency in rectangulations of both kinds, and unify and simplify known bijections between rectangulations and permutation classes. This yields a uniform treatment of mappings between permutations and rectangulations that unifies the results from earlier contributions, and emphasizes parallelism and differences between the weak and the strong cases. Then, we consider the special case of guillotine rectangulations, and prove that they can be characterized - under all known mappings between permutations and rectangulations - by avoidance of two mesh patterns that correspond to "windmills" in rectangulations. This yields new permutation classes in bijection with weak guillotine rectangulations, and the first known permutation class in bijection with strong guillotine rectangulations. Finally, we address enumerative issues and prove asymptotic bounds for several families of strong rectangulations.

Forecasts for key macroeconomic variables are almost always made simultaneously by the same organizations, presented together, and used together in policy analyses and decision-makings. It is therefore important to know whether the forecasters are skillful enough to forecast the future values of those variables. Here a method for joint evaluation of skill in directional forecasts of multiple variables is introduced. The method is simple to use and does not rely on complicated assumptions required by the conventional statistical methods for measuring accuracy of directional forecast. The data on GDP growth and inflation forecasts of three organizations from Thailand, namely, the Bank of Thailand, the Fiscal Policy Office, and the Office of the National Economic and Social Development Council as well as the actual data on GDP growth and inflation of Thailand between 2001 and 2021 are employed in order to demonstrate how the method could be used to evaluate the skills of forecasters in practice. The overall results indicate that these three organizations are somewhat skillful in forecasting the direction-of-changes of GDP growth and inflation when no band and a band of +/- 1 standard deviation of the forecasted outcome are considered. However, when a band of +/- 0.5% of the forecasted outcome is introduced, the skills in forecasting the direction-of-changes of GDP growth and inflation of these three organizations are, at best, little better than intelligent guess work.

We build on the theory of ontology logs (ologs) created by Spivak and Kent, and define a notion of wiring diagrams. In this article, a wiring diagram is a finite directed labelled graph. The labels correspond to types in an olog; they can also be interpreted as readings of sensors in an autonomous system. As such, wiring diagrams can be used as a framework for an autonomous system to form abstract concepts. We show that the graphs underlying skeleton wiring diagrams form a category. This allows skeleton wiring diagrams to be compared and manipulated using techniques from both graph theory and category theory. We also extend the usual definition of graph edit distance to the case of wiring diagrams by using operations only available to wiring diagrams, leading to a metric on the set of all skeleton wiring diagrams. In the end, we give an extended example on calculating the distance between two concepts represented by wiring diagrams, and explain how to apply our framework to any application domain.

We hypothesize that due to the greedy nature of learning in multi-modal deep neural networks, these models tend to rely on just one modality while under-fitting the other modalities. Such behavior is counter-intuitive and hurts the models' generalization, as we observe empirically. To estimate the model's dependence on each modality, we compute the gain on the accuracy when the model has access to it in addition to another modality. We refer to this gain as the conditional utilization rate. In the experiments, we consistently observe an imbalance in conditional utilization rates between modalities, across multiple tasks and architectures. Since conditional utilization rate cannot be computed efficiently during training, we introduce a proxy for it based on the pace at which the model learns from each modality, which we refer to as the conditional learning speed. We propose an algorithm to balance the conditional learning speeds between modalities during training and demonstrate that it indeed addresses the issue of greedy learning. The proposed algorithm improves the model's generalization on three datasets: Colored MNIST, Princeton ModelNet40, and NVIDIA Dynamic Hand Gesture.

北京阿比特科技有限公司