亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Haptic feedback to the surgeon during robotic surgery would enable safer and more immersive surgeries but estimating tissue interaction forces at the tips of robotically controlled surgical instruments has proven challenging. Few existing surgical robots can measure interaction forces directly and the additional sensor may limit the life of instruments. We present a hybrid model and learning-based framework for force estimation for the Patient Side Manipulators (PSM) of a da Vinci Research Kit (dVRK). The model-based component identifies the dynamic parameters of the robot and estimates free-space joint torque, while the learning-based component compensates for environmental factors, such as the additional torque caused by trocar interaction between the PSM instrument and the patient's body wall. We evaluate our method in an abdominal phantom and achieve an error in force estimation of under 10% normalized root-mean-squared error. We show that by using a model-based method to perform dynamics identification, we reduce reliance on the training data covering the entire workspace. Although originally developed for the dVRK, the proposed method is a generalizable framework for other compliant surgical robots. The code is available at //github.com/vu-maple-lab/dvrk_force_estimation.

相關內容

Surgical instrument segmentation (SIS) is pivotal for robotic-assisted minimally invasive surgery, assisting surgeons by identifying surgical instruments in endoscopic video frames. Recent unsupervised surgical instrument segmentation (USIS) methods primarily rely on pseudo-labels derived from low-level features such as color and optical flow, but these methods show limited effectiveness and generalizability in complex and unseen endoscopic scenarios. In this work, we propose a label-free unsupervised model featuring a novel module named Multi-View Normalized Cutter (m-NCutter). Different from previous USIS works, our model is trained using a graph-cutting loss function that leverages patch affinities for supervision, eliminating the need for pseudo-labels. The framework adaptively determines which affinities from which levels should be prioritized. Therefore, the low- and high-level features and their affinities are effectively integrated to train a label-free unsupervised model, showing superior effectiveness and generalization ability. We conduct comprehensive experiments across multiple SIS datasets to validate our approach's state-of-the-art (SOTA) performance, robustness, and exceptional potential as a pre-trained model. Our code is released at //github.com/MingyuShengSMY/AMNCutter.

Careful robot manipulation in every-day cluttered environments requires an accurate understanding of the 3D scene, in order to grasp and place objects stably and reliably and to avoid mistakenly colliding with other objects. In general, we must construct such a 3D interpretation of a complex scene based on limited input, such as a single RGB-D image. We describe SceneComplete, a system for constructing a complete, segmented, 3D model of a scene from a single view. It provides a novel pipeline for composing general-purpose pretrained perception modules (vision-language, segmentation, image-inpainting, image-to-3D, and pose-estimation) to obtain high-accuracy results. We demonstrate its accuracy and effectiveness with respect to ground-truth models in a large benchmark dataset and show that its accurate whole-object reconstruction enables robust grasp proposal generation, including for a dexterous hand. Project website - //scenecomplete.github.io/

Cooperatively Localizing robots should seek optimal control strategies to maximize precision of position estimation and ensure safety in flight. Observability-Aware Trajectory Optimization has strong potential to address this issue, but no concrete link between observability and precision has been proven yet. In this paper, we prove that improvement in positioning precision inherently follows from optimizing observability. Based on this finding, we develop an Observability-Aware Control principle to generate observability-optimal control strategies. We implement this principle in a Model Predictive Control framework, and we verify it on a team of quadrotor Unmanned Aerial Vehicles comprising a follower vehicle localizing itself by tracking a leader vehicle in both simulations and real-world flight tests. Our results demonstrate that maximizing observability contributed to improving global positioning precision for the quadrotor team.

The growing demand for robust scene understanding in mobile robotics and autonomous driving has highlighted the importance of integrating multiple sensing modalities. By combining data from diverse sensors like cameras and LIDARs, fusion techniques can overcome the limitations of individual sensors, enabling a more complete and accurate perception of the environment. We introduce a novel approach to multi-modal sensor fusion, focusing on developing a graph-based state representation that supports critical decision-making processes in autonomous driving. We present a Sensor-Agnostic Graph-Aware Kalman Filter [3], the first online state estimation technique designed to fuse multi-modal graphs derived from noisy multi-sensor data. The estimated graph-based state representations serve as a foundation for advanced applications like Multi-Object Tracking (MOT), offering a comprehensive framework for enhancing the situational awareness and safety of autonomous systems. We validate the effectiveness of our proposed framework through extensive experiments conducted on both synthetic and real-world driving datasets (nuScenes). Our results showcase an improvement in MOTA and a reduction in estimated position errors (MOTP) and identity switches (IDS) for tracked objects using the SAGA-KF. Furthermore, we highlight the capability of such a framework to develop methods that can leverage heterogeneous information (like semantic objects and geometric structures) from various sensing modalities, enabling a more holistic approach to scene understanding and enhancing the safety and effectiveness of autonomous systems.

Integrated sensing and communications (ISAC) has emerged as a means to efficiently utilize spectrum and thereby save cost and power. At the higher end of the spectrum, ISAC systems operate at wideband using large antenna arrays to meet the stringent demands for high-resolution sensing and enhanced communications capacity. On the other hand, the overall design should satisfy energy-efficiency and hardware constraints such as operating on low resolution components for a practical scenario. Therefore, this paper presents the design of Hybrid ANalog and Digital BeAmformers with Low resoLution (HANDBALL) digital-to-analog converters (DACs). We introduce a greedy-search-based approach to design the analog beamformers for multi-user multi-target ISAC scenario. Then, the quantization distortion is taken into account in order to design the baseband beamformer with low resolution DACs. We evaluated performance of the proposed HANDBALL technique in terms of both spectral efficiency and sensing beampattern, providing a satisfactory sensing and communication performance for both one-bit and few-bit designs.

Continuous-time batch state estimation using Gaussian processes is an efficient approach to estimate the trajectories of robots over time. In the past, relatively simple physics-motivated priors have been considered for such approaches, using assumptions such as constant velocity or acceleration. This paper presents an approach to incorporating exogenous control inputs, such as velocity or acceleration commands, into the continuous Gaussian process state-estimation framework. It is shown that this approach generalizes across different domains in robotics, making it applicable to both the estimation of continuous-time trajectories for mobile robots and the estimation of quasi-static continuum robot shapes. Results show that incorporating control inputs leads to more informed priors, potentially requiring less measurements and estimation nodes to obtain accurate estimates. This makes the approach particularly useful in situations in which limited sensing is available.

The success of AI models relies on the availability of large, diverse, and high-quality datasets, which can be challenging to obtain due to data scarcity, privacy concerns, and high costs. Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns. This paper provides an overview of synthetic data research, discussing its applications, challenges, and future directions. We present empirical evidence from prior art to demonstrate its effectiveness and highlight the importance of ensuring its factuality, fidelity, and unbiasedness. We emphasize the need for responsible use of synthetic data to build more powerful, inclusive, and trustworthy language models.

Face recognition technology has advanced significantly in recent years due largely to the availability of large and increasingly complex training datasets for use in deep learning models. These datasets, however, typically comprise images scraped from news sites or social media platforms and, therefore, have limited utility in more advanced security, forensics, and military applications. These applications require lower resolution, longer ranges, and elevated viewpoints. To meet these critical needs, we collected and curated the first and second subsets of a large multi-modal biometric dataset designed for use in the research and development (R&D) of biometric recognition technologies under extremely challenging conditions. Thus far, the dataset includes more than 350,000 still images and over 1,300 hours of video footage of approximately 1,000 subjects. To collect this data, we used Nikon DSLR cameras, a variety of commercial surveillance cameras, specialized long-rage R&D cameras, and Group 1 and Group 2 UAV platforms. The goal is to support the development of algorithms capable of accurately recognizing people at ranges up to 1,000 m and from high angles of elevation. These advances will include improvements to the state of the art in face recognition and will support new research in the area of whole-body recognition using methods based on gait and anthropometry. This paper describes methods used to collect and curate the dataset, and the dataset's characteristics at the current stage.

Collaborative filtering often suffers from sparsity and cold start problems in real recommendation scenarios, therefore, researchers and engineers usually use side information to address the issues and improve the performance of recommender systems. In this paper, we consider knowledge graphs as the source of side information. We propose MKR, a Multi-task feature learning approach for Knowledge graph enhanced Recommendation. MKR is a deep end-to-end framework that utilizes knowledge graph embedding task to assist recommendation task. The two tasks are associated by cross&compress units, which automatically share latent features and learn high-order interactions between items in recommender systems and entities in the knowledge graph. We prove that cross&compress units have sufficient capability of polynomial approximation, and show that MKR is a generalized framework over several representative methods of recommender systems and multi-task learning. Through extensive experiments on real-world datasets, we demonstrate that MKR achieves substantial gains in movie, book, music, and news recommendation, over state-of-the-art baselines. MKR is also shown to be able to maintain a decent performance even if user-item interactions are sparse.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

北京阿比特科技有限公司