As 5G technology becomes increasingly established, the anticipation for 6G is growing, which promises to deliver faster and more reliable wireless connections via cutting-edge radio technologies. However, efficient management method of the large-scale antenna arrays deployed by those radio technologies is crucial. Traditional management methods are mainly reactive, usually based on feedback from users to adapt to the dynamic wireless channel. However, a more promising approach lies in the prediction of spatial channel state information (spatial-CSI), which is an all-inclusive channel characterization and consists of all the feasible line-of-sight (LoS) and non-line-of-sight (NLoS) paths between the transmitter (Tx) and receiver (Rx), with the three-dimension (3D) trajectory, attenuation, phase shift, delay, and polarization of each path. Advances in hardware and neural networks make it possible to predict such spatial-CSI using precise environmental information, and further look into the possibility of holographic communication, which implies complete control over every aspect of the radio waves emitted. Based on the integration of holographic communication and digital twin, we proposed a new framework, digital radio twin, which takes advantages from both the digital world and deterministic control over radio waves, supporting a wide range of high-level applications. As a preliminary attempt towards this visionary direction, in this paper, we explore the use of generative artificial intelligence (AI) to pinpoint the valid paths in a given environment, demonstrating promising results, and highlighting the potential of this approach in driving forward the evolution of 6G wireless communication technologies.
With the growing demand for immersive digital applications, the need to understand and reconstruct 3D scenes has significantly increased. In this context, inpainting indoor environments from a single image plays a crucial role in modeling the internal structure of interior spaces as it enables the creation of textured and clutter-free reconstructions. While recent methods have shown significant progress in room modeling, they rely on constraining layout estimators to guide the reconstruction process. These methods are highly dependent on the performance of the structure estimator and its generative ability in heavily occluded environments. In response to these issues, we propose an innovative approach based on a U-Former architecture and a new Windowed-FourierMixer block, resulting in a unified, single-phase network capable of effectively handle human-made periodic structures such as indoor spaces. This new architecture proves advantageous for tasks involving indoor scenes where symmetry is prevalent, allowing the model to effectively capture features such as horizon/ceiling height lines and cuboid-shaped rooms. Experiments show the proposed approach outperforms current state-of-the-art methods on the Structured3D dataset demonstrating superior performance in both quantitative metrics and qualitative results. Code and models will be made publicly available.
With recent advances in artificial intelligence (AI) and robotics, unmanned vehicle swarms have received great attention from both academia and industry due to their potential to provide services that are difficult and dangerous to perform by humans. However, learning and coordinating movements and actions for a large number of unmanned vehicles in complex and dynamic environments introduce significant challenges to conventional AI methods. Generative AI (GAI), with its capabilities in complex data feature extraction, transformation, and enhancement, offers great potential in solving these challenges of unmanned vehicle swarms. For that, this paper aims to provide a comprehensive survey on applications, challenges, and opportunities of GAI in unmanned vehicle swarms. Specifically, we first present an overview of unmanned vehicles and unmanned vehicle swarms as well as their use cases and existing issues. Then, an in-depth background of various GAI techniques together with their capabilities in enhancing unmanned vehicle swarms are provided. After that, we present a comprehensive review on the applications and challenges of GAI in unmanned vehicle swarms with various insights and discussions. Finally, we highlight open issues of GAI in unmanned vehicle swarms and discuss potential research directions.
Reverse engineering in the realm of Computer-Aided Design (CAD) has been a longstanding aspiration, though not yet entirely realized. Its primary aim is to uncover the CAD process behind a physical object given its 3D scan. We propose CAD-SIGNet, an end-to-end trainable and auto-regressive architecture to recover the design history of a CAD model represented as a sequence of sketch-and-extrusion from an input point cloud. Our model learns visual-language representations by layer-wise cross-attention between point cloud and CAD language embedding. In particular, a new Sketch instance Guided Attention (SGA) module is proposed in order to reconstruct the fine-grained details of the sketches. Thanks to its auto-regressive nature, CAD-SIGNet not only reconstructs a unique full design history of the corresponding CAD model given an input point cloud but also provides multiple plausible design choices. This allows for an interactive reverse engineering scenario by providing designers with multiple next-step choices along with the design process. Extensive experiments on publicly available CAD datasets showcase the effectiveness of our approach against existing baseline models in two settings, namely, full design history recovery and conditional auto-completion from point clouds.
Stacked intelligent metasurfaces (SIM) is a revolutionary technology, which can outperform its single-layer counterparts by performing advanced signal processing relying on wave propagation. In this work, we exploit SIM to enable transmit precoding and receiver combining in holographic multiple-input multiple-output (HMIMO) communications, and we study the achievable rate by formulating a joint optimization problem of the SIM phase shifts at both sides of the transceiver and the covariance matrix of the transmitted signal. Notably, we propose its solution by means of an iterative optimization algorithm that relies on the projected gradient method, and accounts for all optimization parameters simultaneously. We also obtain the step size guaranteeing the convergence of the proposed algorithm. Simulation results provide fundamental insights such the performance improvements compared to the single-RIS counterpart and conventional MIMO system. Remarkably, the proposed algorithm results in the same achievable rate as the alternating optimization (AO) benchmark but with a less number of iterations.
The robot position speculation, which determines where the chassis should move, is one key step to control the mobile manipulators. The target position must ensure the feasibility of chassis movement and manipulability, which is guaranteed by randomized sampling and kinematic checking in traditional methods. Addressing the demands of agile robotics, this paper proposes a robot position speculation network(RPSN), a learning-based approach to enhance the agility of mobile manipulators. The RPSN incorporates a differentiable inverse kinematic algorithm and a neural network. Through end-to-end training, the RPSN can speculate positions with a high success rate. We apply the RPSN to mobile manipulators disassembling end-of-life electric vehicle batteries (EOL-EVBs). Extensive experiments on various simulated environments and physical mobile manipulators demonstrate that the probability of the initial position provided by RPSN being the ideal position is 96.67%. From the kinematic constraint perspective, it achieves 100% generation of the ideal position on average within 1.28 attempts. Much lower than that of random sampling, 31.04. Moreover, the proposed method demonstrates superior data efficiency over pure neural network approaches. The proposed RPSN enables the robot to quickly infer feasible target positions by intuition. This work moves towards building agile robots that can act swiftly like humans.
Web automation holds the potential to revolutionize how users interact with the digital world, offering unparalleled assistance and simplifying tasks via sophisticated computational methods. Central to this evolution is the web element nomination task, which entails identifying unique elements on webpages. Unfortunately, the development of algorithmic designs for web automation is hampered by the scarcity of comprehensive and realistic datasets that reflect the complexity faced by real-world applications on the Web. To address this, we introduce the Klarna Product Page Dataset, a comprehensive and diverse collection of webpages that surpasses existing datasets in richness and variety. The dataset features 51,701 manually labeled product pages from 8,175 e-commerce websites across eight geographic regions, accompanied by a dataset of rendered page screenshots. To initiate research on the Klarna Product Page Dataset, we empirically benchmark a range of Graph Neural Networks (GNNs) on the web element nomination task. We make three important contributions. First, we found that a simple Convolutional GNN (GCN) outperforms complex state-of-the-art nomination methods. Second, we introduce a training refinement procedure that involves identifying a small number of relevant elements from each page using the aforementioned GCN. These elements are then passed to a large language model for the final nomination. This procedure significantly improves the nomination accuracy by 16.8 percentage points on our challenging dataset, without any need for fine-tuning. Finally, in response to another prevalent challenge in this field - the abundance of training methodologies suitable for element nomination - we introduce the Challenge Nomination Training Procedure, a novel training approach that further boosts nomination accuracy.
The widespread use of ChatGPT and other emerging technology powered by generative artificial intelligence (GenAI) has drawn much attention to potential ethical issues, especially in high-stakes applications such as healthcare, but ethical discussions are yet to translate into operationalisable solutions. Furthermore, ongoing ethical discussions often neglect other types of GenAI that have been used to synthesise data (e.g., images) for research and practical purposes, which resolved some ethical issues and exposed others. We conduct a scoping review of ethical discussions on GenAI in healthcare to comprehensively analyse gaps in the current research, and further propose to reduce the gaps by developing a checklist for comprehensive assessment and transparent documentation of ethical discussions in GenAI research. The checklist can be readily integrated into the current peer review and publication system to enhance GenAI research, and may be used for ethics-related disclosures for GenAI-powered products, healthcare applications of such products and beyond.
Face recognition technology has advanced significantly in recent years due largely to the availability of large and increasingly complex training datasets for use in deep learning models. These datasets, however, typically comprise images scraped from news sites or social media platforms and, therefore, have limited utility in more advanced security, forensics, and military applications. These applications require lower resolution, longer ranges, and elevated viewpoints. To meet these critical needs, we collected and curated the first and second subsets of a large multi-modal biometric dataset designed for use in the research and development (R&D) of biometric recognition technologies under extremely challenging conditions. Thus far, the dataset includes more than 350,000 still images and over 1,300 hours of video footage of approximately 1,000 subjects. To collect this data, we used Nikon DSLR cameras, a variety of commercial surveillance cameras, specialized long-rage R&D cameras, and Group 1 and Group 2 UAV platforms. The goal is to support the development of algorithms capable of accurately recognizing people at ranges up to 1,000 m and from high angles of elevation. These advances will include improvements to the state of the art in face recognition and will support new research in the area of whole-body recognition using methods based on gait and anthropometry. This paper describes methods used to collect and curate the dataset, and the dataset's characteristics at the current stage.
Over the past few years, the rapid development of deep learning technologies for computer vision has greatly promoted the performance of medical image segmentation (MedISeg). However, the recent MedISeg publications usually focus on presentations of the major contributions (e.g., network architectures, training strategies, and loss functions) while unwittingly ignoring some marginal implementation details (also known as "tricks"), leading to a potential problem of the unfair experimental result comparisons. In this paper, we collect a series of MedISeg tricks for different model implementation phases (i.e., pre-training model, data pre-processing, data augmentation, model implementation, model inference, and result post-processing), and experimentally explore the effectiveness of these tricks on the consistent baseline models. Compared to paper-driven surveys that only blandly focus on the advantages and limitation analyses of segmentation models, our work provides a large number of solid experiments and is more technically operable. With the extensive experimental results on both the representative 2D and 3D medical image datasets, we explicitly clarify the effect of these tricks. Moreover, based on the surveyed tricks, we also open-sourced a strong MedISeg repository, where each of its components has the advantage of plug-and-play. We believe that this milestone work not only completes a comprehensive and complementary survey of the state-of-the-art MedISeg approaches, but also offers a practical guide for addressing the future medical image processing challenges including but not limited to small dataset learning, class imbalance learning, multi-modality learning, and domain adaptation. The code has been released at: //github.com/hust-linyi/MedISeg
Graph Convolutional Networks (GCNs) have been widely applied in various fields due to their significant power on processing graph-structured data. Typical GCN and its variants work under a homophily assumption (i.e., nodes with same class are prone to connect to each other), while ignoring the heterophily which exists in many real-world networks (i.e., nodes with different classes tend to form edges). Existing methods deal with heterophily by mainly aggregating higher-order neighborhoods or combing the immediate representations, which leads to noise and irrelevant information in the result. But these methods did not change the propagation mechanism which works under homophily assumption (that is a fundamental part of GCNs). This makes it difficult to distinguish the representation of nodes from different classes. To address this problem, in this paper we design a novel propagation mechanism, which can automatically change the propagation and aggregation process according to homophily or heterophily between node pairs. To adaptively learn the propagation process, we introduce two measurements of homophily degree between node pairs, which is learned based on topological and attribute information, respectively. Then we incorporate the learnable homophily degree into the graph convolution framework, which is trained in an end-to-end schema, enabling it to go beyond the assumption of homophily. More importantly, we theoretically prove that our model can constrain the similarity of representations between nodes according to their homophily degree. Experiments on seven real-world datasets demonstrate that this new approach outperforms the state-of-the-art methods under heterophily or low homophily, and gains competitive performance under homophily.