亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Open X-Embodiment Collaboration,Abby O'Neill,Abdul Rehman,Abhiram Maddukuri,Abhishek Gupta,Abhishek Padalkar,Abraham Lee,Acorn Pooley,Agrim Gupta,Ajay Mandlekar,Ajinkya Jain,Albert Tung,Alex Bewley,Alex Herzog,Alex Irpan,Alexander Khazatsky,Anant Rai,Anchit Gupta,Andrew Wang,Anikait Singh,Animesh Garg,Aniruddha Kembhavi,Annie Xie,Anthony Brohan,Antonin Raffin,Archit Sharma,Arefeh Yavary,Arhan Jain,Ashwin Balakrishna,Ayzaan Wahid,Ben Burgess-Limerick,Beomjoon Kim,Bernhard Sch?lkopf,Blake Wulfe,Brian Ichter,Cewu Lu,Charles Xu,Charlotte Le,Chelsea Finn,Chen Wang,Chenfeng Xu,Cheng Chi,Chenguang Huang,Christine Chan,Christopher Agia,Chuer Pan,Chuyuan Fu,Coline Devin,Danfei Xu,Daniel Morton,Danny Driess,Daphne Chen,Deepak Pathak,Dhruv Shah,Dieter Büchler,Dinesh Jayaraman,Dmitry Kalashnikov,Dorsa Sadigh,Edward Johns,Ethan Foster,Fangchen Liu,Federico Ceola,Fei Xia,Feiyu Zhao,Freek Stulp,Gaoyue Zhou,Gaurav S. Sukhatme,Gautam Salhotra,Ge Yan,Gilbert Feng,Giulio Schiavi,Glen Berseth,Gregory Kahn,Guanzhi Wang,Hao Su,Hao-Shu Fang,Haochen Shi,Henghui Bao,Heni Ben Amor,Henrik I Christensen,Hiroki Furuta,Homer Walke,Hongjie Fang,Huy Ha,Igor Mordatch,Ilija Radosavovic,Isabel Leal,Jacky Liang,Jad Abou-Chakra,Jaehyung Kim,Jaimyn Drake,Jan Peters,Jan Schneider,Jasmine Hsu,Jeannette Bohg,Jeffrey Bingham,Jeffrey Wu,Jensen Gao,Jiaheng Hu,Jiajun Wu,Jialin Wu,Jiankai Sun,Jianlan Luo,Jiayuan Gu,Jie Tan,Jihoon Oh,Jimmy Wu,Jingpei Lu,Jingyun Yang,Jitendra Malik,Jo?o Silvério,Joey Hejna,Jonathan Booher,Jonathan Tompson,Jonathan Yang,Jordi Salvador,Joseph J. Lim,Junhyek Han,Kaiyuan Wang,Kanishka Rao,Karl Pertsch,Karol Hausman,Keegan Go,Keerthana Gopalakrishnan,Ken Goldberg,Kendra Byrne,Kenneth Oslund,Kento Kawaharazuka,Kevin Black,Kevin Lin,Kevin Zhang,Kiana Ehsani,Kiran Lekkala,Kirsty Ellis,Krishan Rana,Krishnan Srinivasan,Kuan Fang,Kunal Pratap Singh,Kuo-Hao Zeng,Kyle Hatch,Kyle Hsu,Laurent Itti,Lawrence Yunliang Chen,Lerrel Pinto,Li Fei-Fei,Liam Tan,Linxi "Jim" Fan,Lionel Ott,Lisa Lee,Luca Weihs,Magnum Chen,Marion Lepert,Marius Memmel,Masayoshi Tomizuka,Masha Itkina,Mateo Guaman Castro,Max Spero,Maximilian Du,Michael Ahn,Michael C. Yip,Mingtong Zhang,Mingyu Ding,Minho Heo,Mohan Kumar Srirama,Mohit Sharma,Moo Jin Kim,Naoaki Kanazawa,Nicklas Hansen,Nicolas Heess,Nikhil J Joshi,Niko Suenderhauf,Ning Liu,Norman Di Palo,Nur Muhammad Mahi Shafiullah,Oier Mees,Oliver Kroemer,Osbert Bastani,Pannag R Sanketi,Patrick "Tree" Miller,Patrick Yin,Paul Wohlhart,Peng Xu,Peter David Fagan,Peter Mitrano,Pierre Sermanet,Pieter Abbeel,Priya Sundaresan,Qiuyu Chen,Quan Vuong,Rafael Rafailov,Ran Tian,Ria Doshi,Roberto Martín-Martín,Rohan Baijal,Rosario Scalise,Rose Hendrix,Roy Lin,Runjia Qian,Ruohan Zhang,Russell Mendonca,Rutav Shah,Ryan Hoque,Ryan Julian,Samuel Bustamante,Sean Kirmani,Sergey Levine,Shan Lin,Sherry Moore,Shikhar Bahl,Shivin Dass,Shubham Sonawani,Shuran Song,Sichun Xu,Siddhant Haldar,Siddharth Karamcheti,Simeon Adebola,Simon Guist,Soroush Nasiriany,Stefan Schaal,Stefan Welker,Stephen Tian,Subramanian Ramamoorthy,Sudeep Dasari,Suneel Belkhale,Sungjae Park,Suraj Nair,Suvir Mirchandani,Takayuki Osa,Tanmay Gupta,Tatsuya Harada,Tatsuya Matsushima,Ted Xiao,Thomas Kollar,Tianhe Yu,Tianli Ding,Todor Davchev,Tony Z. Zhao,Travis Armstrong,Trevor Darrell,Trinity Chung,Vidhi Jain,Vincent Vanhoucke,Wei Zhan,Wenxuan Zhou,Wolfram Burgard,Xi Chen,Xiaolong Wang,Xinghao Zhu,Xinyang Geng,Xiyuan Liu,Xu Liangwei,Xuanlin Li,Yao Lu,Yecheng Jason Ma,Yejin Kim,Yevgen Chebotar,Yifan Zhou,Yifeng Zhu,Yilin Wu,Ying Xu,Yixuan Wang,Yonatan Bisk,Yoonyoung Cho,Youngwoon Lee,Yuchen Cui,Yue Cao,Yueh-Hua Wu,Yujin Tang,Yuke Zhu,Yunchu Zhang,Yunfan Jiang,Yunshuang Li,Yunzhu Li,Yusuke Iwasawa,Yutaka Matsuo,Zehan Ma,Zhuo Xu,Zichen Jeff Cui,Zichen Zhang,Zipeng Lin
Open X-Embodiment Collaboration,Abby O'Neill,Abdul Rehman,Abhiram Maddukuri,Abhishek Gupta,Abhishek Padalkar,Abraham Lee,Acorn Pooley,Agrim Gupta,Ajay Mandlekar,Ajinkya Jain,Albert Tung,Alex Bewley,Alex Herzog,Alex Irpan,Alexander Khazatsky,Anant Rai,Anchit Gupta,Andrew Wang,Anikait Singh,Animesh Garg,Aniruddha Kembhavi,Annie Xie,Anthony Brohan,Antonin Raffin,Archit Sharma,Arefeh Yavary,Arhan Jain,Ashwin Balakrishna,Ayzaan Wahid,Ben Burgess-Limerick,Beomjoon Kim,Bernhard Sch?lkopf,Blake Wulfe,Brian Ichter,Cewu Lu,Charles Xu,Charlotte Le,Chelsea Finn,Chen Wang,Chenfeng Xu,Cheng Chi,Chenguang Huang,Christine Chan,Christopher Agia,Chuer Pan,Chuyuan Fu,Coline Devin,Danfei Xu,Daniel Morton,Danny Driess,Daphne Chen,Deepak Pathak,Dhruv Shah,Dieter Büchler,Dinesh Jayaraman,Dmitry Kalashnikov,Dorsa Sadigh,Edward Johns,Ethan Foster,Fangchen Liu,Federico Ceola,Fei Xia,Feiyu Zhao,Freek Stulp,Gaoyue Zhou,Gaurav S. Sukhatme,Gautam Salhotra,Ge Yan,Gilbert Feng,Giulio Schiavi,Glen Berseth,Gregory Kahn,Guanzhi Wang,Hao Su,Hao-Shu Fang,Haochen Shi,Henghui Bao,Heni Ben Amor,Henrik I Christensen,Hiroki Furuta,Homer Walke,Hongjie Fang,Huy Ha,Igor Mordatch,Ilija Radosavovic,Isabel Leal,Jacky Liang,Jad Abou-Chakra,Jaehyung Kim,Jaimyn Drake,Jan Peters,Jan Schneider,Jasmine Hsu,Jeannette Bohg,Jeffrey Bingham,Jeffrey Wu,Jensen Gao,Jiaheng Hu,Jiajun Wu,Jialin Wu,Jiankai Sun,Jianlan Luo,Jiayuan Gu,Jie Tan,Jihoon Oh,Jimmy Wu,Jingpei Lu,Jingyun Yang,Jitendra Malik,Jo?o Silvério,Joey Hejna,Jonathan Booher,Jonathan Tompson,Jonathan Yang,Jordi Salvador,Joseph J. Lim,Junhyek Han,Kaiyuan Wang,Kanishka Rao,Karl Pertsch,Karol Hausman,Keegan Go,Keerthana Gopalakrishnan,Ken Goldberg,Kendra Byrne,Kenneth Oslund,Kento Kawaharazuka,Kevin Black,Kevin Lin,Kevin Zhang,Kiana Ehsani,Kiran Lekkala,Kirsty Ellis,Krishan Rana,Krishnan Srinivasan,Kuan Fang,Kunal Pratap Singh,Kuo-Hao Zeng,Kyle Hatch,Kyle Hsu,Laurent Itti,Lawrence Yunliang Chen,Lerrel Pinto,Li Fei-Fei,Liam Tan,Linxi "Jim" Fan,Lionel Ott,Lisa Lee,Luca Weihs,Magnum Chen,Marion Lepert,Marius Memmel,Masayoshi Tomizuka,Masha Itkina,Mateo Guaman Castro,Max Spero,Maximilian Du,Michael Ahn,Michael C. Yip,Mingtong Zhang,Mingyu Ding,Minho Heo,Mohan Kumar Srirama,Mohit Sharma,Moo Jin Kim,Naoaki Kanazawa,Nicklas Hansen,Nicolas Heess,Nikhil J Joshi,Niko Suenderhauf,Ning Liu,Norman Di Palo,Nur Muhammad Mahi Shafiullah,Oier Mees,Oliver Kroemer,Osbert Bastani,Pannag R Sanketi,Patrick "Tree" Miller,Patrick Yin,Paul Wohlhart,Peng Xu,Peter David Fagan,Peter Mitrano,Pierre Sermanet,Pieter Abbeel,Priya Sundaresan,Qiuyu Chen,Quan Vuong,Rafael Rafailov,Ran Tian,Ria Doshi,Roberto Martín-Martín,Rohan Baijal,Rosario Scalise,Rose Hendrix,Roy Lin,Runjia Qian,Ruohan Zhang,Russell Mendonca,Rutav Shah,Ryan Hoque,Ryan Julian,Samuel Bustamante,Sean Kirmani,Sergey Levine,Shan Lin,Sherry Moore,Shikhar Bahl,Shivin Dass,Shubham Sonawani,Shuran Song,Sichun Xu,Siddhant Haldar,Siddharth Karamcheti,Simeon Adebola,Simon Guist,Soroush Nasiriany,Stefan Schaal,Stefan Welker,Stephen Tian,Subramanian Ramamoorthy,Sudeep Dasari,Suneel Belkhale,Sungjae Park,Suraj Nair,Suvir Mirchandani,Takayuki Osa,Tanmay Gupta,Tatsuya Harada,Tatsuya Matsushima,Ted Xiao,Thomas Kollar,Tianhe Yu,Tianli Ding,Todor Davchev,Tony Z. Zhao,Travis Armstrong,Trevor Darrell,Trinity Chung,Vidhi Jain,Vincent Vanhoucke,Wei Zhan,Wenxuan Zhou,Wolfram Burgard,Xi Chen,Xiaolong Wang,Xinghao Zhu,Xinyang Geng,Xiyuan Liu,Xu Liangwei,Xuanlin Li,Yao Lu,Yecheng Jason Ma,Yejin Kim,Yevgen Chebotar,Yifan Zhou,Yifeng Zhu,Yilin Wu,Ying Xu,Yixuan Wang,Yonatan Bisk,Yoonyoung Cho,Youngwoon Lee,Yuchen Cui,Yue Cao,Yueh-Hua Wu,Yujin Tang,Yuke Zhu,Yunchu Zhang,Yunfan Jiang,Yunshuang Li,Yunzhu Li,Yusuke Iwasawa,Yutaka Matsuo,Zehan Ma,Zhuo Xu,Zichen Jeff Cui,Zichen Zhang,Zipeng Lin

Large, high-capacity models trained on diverse datasets have shown remarkable successes on efficiently tackling downstream applications. In domains from NLP to Computer Vision, this has led to a consolidation of pretrained models, with general pretrained backbones serving as a starting point for many applications. Can such a consolidation happen in robotics? Conventionally, robotic learning methods train a separate model for every application, every robot, and even every environment. Can we instead train generalist X-robot policy that can be adapted efficiently to new robots, tasks, and environments? In this paper, we provide datasets in standardized data formats and models to make it possible to explore this possibility in the context of robotic manipulation, alongside experimental results that provide an example of effective X-robot policies. We assemble a dataset from 22 different robots collected through a collaboration between 21 institutions, demonstrating 527 skills (160266 tasks). We show that a high-capacity model trained on this data, which we call RT-X, exhibits positive transfer and improves the capabilities of multiple robots by leveraging experience from other platforms. More details can be found on the project website //robotics-transformer-x.github.io.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · MoDELS · 標注 · 數據集 · 預測值 ·
2024 年 5 月 2 日

Large Vision-Language models (VLMs) have demonstrated strong reasoning capabilities in tasks requiring a fine-grained understanding of literal images and text, such as visual question-answering or visual entailment. However, there has been little exploration of these models' capabilities when presented with images and captions containing figurative phenomena such as metaphors or humor, the meaning of which is often implicit. To close this gap, we propose a new task and a high-quality dataset: Visual Figurative Language Understanding with Textual Explanations (V-FLUTE). We frame the visual figurative language understanding problem as an explainable visual entailment task, where the model has to predict whether the image (premise) entails a claim (hypothesis) and justify the predicted label with a textual explanation. Using a human-AI collaboration framework, we build a high-quality dataset, V-FLUTE, that contains 6,027 <image, claim, label, explanation> instances spanning five diverse multimodal figurative phenomena: metaphors, similes, idioms, sarcasm, and humor. The figurative phenomena can be present either in the image, the caption, or both. We further conduct both automatic and human evaluations to assess current VLMs' capabilities in understanding figurative phenomena.

We introduce a new regression framework designed to deal with large-scale, complex data that lies around a low-dimensional manifold with noises. Our approach first constructs a graph representation, referred to as the skeleton, to capture the underlying geometric structure. We then define metrics on the skeleton graph and apply nonparametric regression techniques, along with feature transformations based on the graph, to estimate the regression function. We also discuss the limitations of some nonparametric regressors with respect to the general metric space such as the skeleton graph. The proposed regression framework suggests a novel way to deal with data with underlying geometric structures and provides additional advantages in handling the union of multiple manifolds, additive noises, and noisy observations. We provide statistical guarantees for the proposed method and demonstrate its effectiveness through simulations and real data examples.

Emerging multi-model workloads with heavy models like recent large language models significantly increased the compute and memory demands on hardware. To address such increasing demands, designing a scalable hardware architecture became a key problem. Among recent solutions, the 2.5D silicon interposer multi-chip module (MCM)-based AI accelerator has been actively explored as a promising scalable solution due to their significant benefits in the low engineering cost and composability. However, previous MCM accelerators are based on homogeneous architectures with fixed dataflow, which encounter major challenges from highly heterogeneous multi-model workloads due to their limited workload adaptivity. Therefore, in this work, we explore the opportunity in the heterogeneous dataflow MCM AI accelerators. We identify the scheduling of multi-model workload on heterogeneous dataflow MCM AI accelerator is an important and challenging problem due to its significance and scale, which reaches O(10^18) scale even for a single model case on 6x6 chiplets. We develop a set of heuristics to navigate the huge scheduling space and codify them into a scheduler with advanced techniques such as inter-chiplet pipelining. Our evaluation on ten multi-model workload scenarios for datacenter multitenancy and AR/VR use-cases has shown the efficacy of our approach, achieving on average 35.3% and 31.4% less energy-delay product (EDP) for the respective applications settings compared to homogeneous baselines.

Quantization has become a mainstream compression technique for reducing model size, computational requirements, and energy consumption for modern deep neural networks (DNNs). With improved numerical support in recent hardware, including multiple variants of integer and floating point, mixed-precision quantization has become necessary to achieve high-quality results with low model cost. Prior mixed-precision methods have performed either a post-training quantization search, which compromises on accuracy, or a differentiable quantization search, which leads to high memory usage from branching. Therefore, we propose the first one-shot mixed-precision quantization search that eliminates the need for retraining in both integer and low-precision floating point models. We evaluate our search (FLIQS) on multiple convolutional and vision transformer networks to discover Pareto-optimal models. Our approach improves upon uniform precision, manual mixed-precision, and recent integer quantization search methods. With integer models, we increase the accuracy of ResNet-18 on ImageNet by 1.31% and ResNet-50 by 0.90% with equivalent model cost over previous methods. Additionally, for the first time, we explore a novel mixed-precision floating-point search and improve MobileNetV2 by up to 0.98% compared to prior state-of-the-art FP8 models. Finally, we extend FLIQS to simultaneously search a joint quantization and neural architecture space and improve the ImageNet accuracy by 2.69% with similar model cost on a MobileNetV2 search space.

As an important and practical way to obtain high dynamic range (HDR) video, HDR video reconstruction from sequences with alternating exposures is still less explored, mainly due to the lack of large-scale real-world datasets. Existing methods are mostly trained on synthetic datasets, which perform poorly in real scenes. In this work, to facilitate the development of real-world HDR video reconstruction, we present Real-HDRV, a large-scale real-world benchmark dataset for HDR video reconstruction, featuring various scenes, diverse motion patterns, and high-quality labels. Specifically, our dataset contains 500 LDRs-HDRs video pairs, comprising about 28,000 LDR frames and 4,000 HDR labels, covering daytime, nighttime, indoor, and outdoor scenes. To our best knowledge, our dataset is the largest real-world HDR video reconstruction dataset. Correspondingly, we propose an end-to-end network for HDR video reconstruction, where a novel two-stage strategy is designed to perform alignment sequentially. Specifically, the first stage performs global alignment with the adaptively estimated global offsets, reducing the difficulty of subsequent alignment. The second stage implicitly performs local alignment in a coarse-to-fine manner at the feature level using the adaptive separable convolution. Extensive experiments demonstrate that: (1) models trained on our dataset can achieve better performance on real scenes than those trained on synthetic datasets; (2) our method outperforms previous state-of-the-art methods. Our dataset is available at //github.com/yungsyu99/Real-HDRV.

By adopting a more flexible definition of unlearning and adjusting the model distribution to simulate training without the targeted data, approximate machine unlearning provides a less resource-demanding alternative to the more laborious exact unlearning methods. Yet, the unlearning completeness of target samples-even when the approximate algorithms are executed faithfully without external threats-remains largely unexamined, raising questions about those approximate algorithms' ability to fulfill their commitment of unlearning during the lifecycle. In this paper, we introduce the task of Lifecycle Unlearning Commitment Management (LUCM) for approximate unlearning and outline its primary challenges. We propose an efficient metric designed to assess the sample-level unlearning completeness. Our empirical results demonstrate its superiority over membership inference techniques in two key areas: the strong correlation of its measurements with unlearning completeness across various unlearning tasks, and its computational efficiency, making it suitable for real-time applications. Additionally, we show that this metric is able to serve as a tool for monitoring unlearning anomalies throughout the unlearning lifecycle, including both under-unlearning and over-unlearning. We apply this metric to evaluate the unlearning commitments of current approximate algorithms. Our analysis, conducted across multiple unlearning benchmarks, reveals that these algorithms inconsistently fulfill their unlearning commitments due to two main issues: 1) unlearning new data can significantly affect the unlearning utility of previously requested data, and 2) approximate algorithms fail to ensure equitable unlearning utility across different groups. These insights emphasize the crucial importance of LUCM throughout the unlearning lifecycle. We will soon open-source our newly developed benchmark.

Minimizing the need for pixel-level annotated data for training PET anomaly segmentation networks is crucial, particularly due to time and cost constraints related to expert annotations. Current un-/weakly-supervised anomaly detection methods rely on autoencoder or generative adversarial networks trained only on healthy data, although these are more challenging to train. In this work, we present a weakly supervised and Implicitly guided COuNterfactual diffusion model for Detecting Anomalies in PET images, branded as IgCONDA-PET. The training is conditioned on image class labels (healthy vs. unhealthy) along with implicit guidance to generate counterfactuals for an unhealthy image with anomalies. The counterfactual generation process synthesizes the healthy counterpart for a given unhealthy image, and the difference between the two facilitates the identification of anomaly locations. The code is available at: //github.com/igcondapet/IgCONDA-PET.git

Hierarchical structures are popular in recent vision transformers, however, they require sophisticated designs and massive datasets to work well. In this paper, we explore the idea of nesting basic local transformers on non-overlapping image blocks and aggregating them in a hierarchical way. We find that the block aggregation function plays a critical role in enabling cross-block non-local information communication. This observation leads us to design a simplified architecture that requires minor code changes upon the original vision transformer. The benefits of the proposed judiciously-selected design are threefold: (1) NesT converges faster and requires much less training data to achieve good generalization on both ImageNet and small datasets like CIFAR; (2) when extending our key ideas to image generation, NesT leads to a strong decoder that is 8$\times$ faster than previous transformer-based generators; and (3) we show that decoupling the feature learning and abstraction processes via this nested hierarchy in our design enables constructing a novel method (named GradCAT) for visually interpreting the learned model. Source code is available //github.com/google-research/nested-transformer.

In many visual systems, visual tracking often bases on RGB image sequences, in which some targets are invalid in low-light conditions, and tracking performance is thus affected significantly. Introducing other modalities such as depth and infrared data is an effective way to handle imaging limitations of individual sources, but multi-modal imaging platforms usually require elaborate designs and cannot be applied in many real-world applications at present. Near-infrared (NIR) imaging becomes an essential part of many surveillance cameras, whose imaging is switchable between RGB and NIR based on the light intensity. These two modalities are heterogeneous with very different visual properties and thus bring big challenges for visual tracking. However, existing works have not studied this challenging problem. In this work, we address the cross-modal object tracking problem and contribute a new video dataset, including 654 cross-modal image sequences with over 481K frames in total, and the average video length is more than 735 frames. To promote the research and development of cross-modal object tracking, we propose a new algorithm, which learns the modality-aware target representation to mitigate the appearance gap between RGB and NIR modalities in the tracking process. It is plug-and-play and could thus be flexibly embedded into different tracking frameworks. Extensive experiments on the dataset are conducted, and we demonstrate the effectiveness of the proposed algorithm in two representative tracking frameworks against 17 state-of-the-art tracking methods. We will release the dataset for free academic usage, dataset download link and code will be released soon.

Large-scale pre-trained models (PTMs) such as BERT and GPT have recently achieved great success and become a milestone in the field of artificial intelligence (AI). Owing to sophisticated pre-training objectives and huge model parameters, large-scale PTMs can effectively capture knowledge from massive labeled and unlabeled data. By storing knowledge into huge parameters and fine-tuning on specific tasks, the rich knowledge implicitly encoded in huge parameters can benefit a variety of downstream tasks, which has been extensively demonstrated via experimental verification and empirical analysis. It is now the consensus of the AI community to adopt PTMs as backbone for downstream tasks rather than learning models from scratch. In this paper, we take a deep look into the history of pre-training, especially its special relation with transfer learning and self-supervised learning, to reveal the crucial position of PTMs in the AI development spectrum. Further, we comprehensively review the latest breakthroughs of PTMs. These breakthroughs are driven by the surge of computational power and the increasing availability of data, towards four important directions: designing effective architectures, utilizing rich contexts, improving computational efficiency, and conducting interpretation and theoretical analysis. Finally, we discuss a series of open problems and research directions of PTMs, and hope our view can inspire and advance the future study of PTMs.

北京阿比特科技有限公司