Tweets are the most concise form of communication in online social media, wherein a single tweet has the potential to make or break the discourse of the conversation. Online hate speech is more accessible than ever, and stifling its propagation is of utmost importance for social media companies and users for congenial communication. Most of the research barring a recent few has focused on classifying an individual tweet regardless of the tweet thread/context leading up to that point. One of the classical approaches to curb hate speech is to adopt a reactive strategy after the hate speech postage. The ex-post facto strategy results in neglecting subtle posts that do not show the potential to instigate hate speech on their own but may portend in the subsequent discussion ensuing in the post's replies. In this paper, we propose DRAGNET++, which aims to predict the intensity of hatred that a tweet can bring in through its reply chain in the future. It uses the semantic and propagating structure of the tweet threads to maximize the contextual information leading up to and the fall of hate intensity at each subsequent tweet. We explore three publicly available Twitter datasets -- Anti-Racism contains the reply tweets of a collection of social media discourse on racist remarks during US political and Covid-19 background; Anti-Social presents a dataset of 40 million tweets amidst the COVID-19 pandemic on anti-social behaviours; and Anti-Asian presents Twitter datasets collated based on anti-Asian behaviours during COVID-19 pandemic. All the curated datasets consist of structural graph information of the Tweet threads. We show that DRAGNET++ outperforms all the state-of-the-art baselines significantly. It beats the best baseline by an 11% margin on the Person correlation coefficient and a decrease of 25% on RMSE for the Anti-Racism dataset with a similar performance on the other two datasets.
The separation of performance metrics from gradient based loss functions may not always give optimal results and may miss vital aggregate information. This paper investigates incorporating a performance metric alongside differentiable loss functions to inform training outcomes. The goal is to guide model performance and interpretation by assuming statistical distributions on this performance metric for dynamic weighting. The focus is on van Rijsbergens $F_{\beta}$ metric -- a popular choice for gauging classification performance. Through distributional assumptions on the $F_{\beta}$, an intermediary link can be established to the standard binary cross-entropy via dynamic penalty weights. First, the $F_{\beta}$ metric is reformulated to facilitate assuming statistical distributions with accompanying proofs for the cumulative density function. These probabilities are used within a knee curve algorithm to find an optimal $\beta$ or $\beta_{opt}$. This $\beta_{opt}$ is used as a weight or penalty in the proposed weighted binary cross-entropy. Experimentation on publicly available data with imbalanced classes mostly yields better and interpretable results as compared to the baseline. For example, for the IMDB text data with known labeling errors, a 14% boost is shown. This methodology can provide better interpretation.
The increasing availability of graph-structured data motivates the task of optimising over functions defined on the node set of graphs. Traditional graph search algorithms can be applied in this case, but they may be sample-inefficient and do not make use of information about the function values; on the other hand, Bayesian optimisation is a class of promising black-box solvers with superior sample efficiency, but it has been scarcely been applied to such novel setups. To fill this gap, we propose a novel Bayesian optimisation framework that optimises over functions defined on generic, large-scale and potentially unknown graphs. Through the learning of suitable kernels on graphs, our framework has the advantage of adapting to the behaviour of the target function. The local modelling approach further guarantees the efficiency of our method. Extensive experiments on both synthetic and real-world graphs demonstrate the effectiveness of the proposed optimisation framework.
In healthcare, detecting stress and enabling individuals to monitor their mental health and wellbeing is challenging. Advancements in wearable technology now enable continuous physiological data collection. This data can provide insights into mental health and behavioural states through psychophysiological analysis. However, automated analysis is required to provide timely results due to the quantity of data collected. Machine learning has shown efficacy in providing an automated classification of physiological data for health applications in controlled laboratory environments. Ambulatory uncontrolled environments, however, provide additional challenges requiring further modelling to overcome. This work empirically assesses several approaches utilising machine learning classifiers to detect stress using physiological data recorded in an ambulatory setting with self-reported stress annotations. A subset of the training portion SMILE dataset enables the evaluation of approaches before submission. The optimal stress detection approach achieves 90.77% classification accuracy, 91.24 F1-Score, 90.42 Sensitivity and 91.08 Specificity, utilising an ExtraTrees classifier and feature imputation methods. Meanwhile, accuracy on the challenge data is much lower at 59.23% (submission #54 from BEaTS-MTU, username ZacDair). The cause of the performance disparity is explored in this work.
It is often very challenging to manually design reward functions for complex, real-world tasks. To solve this, one can instead use reward learning to infer a reward function from data. However, there are often multiple reward functions that fit the data equally well, even in the infinite-data limit. This means that the reward function is only partially identifiable. In this work, we formally characterise the partial identifiability of the reward function given several popular reward learning data sources, including expert demonstrations and trajectory comparisons. We also analyse the impact of this partial identifiability for several downstream tasks, such as policy optimisation. We unify our results in a framework for comparing data sources and downstream tasks by their invariances, with implications for the design and selection of data sources for reward learning.
The detection of shouted speech is crucial in audio surveillance and monitoring. Although it is desirable for a security system to be able to identify emergencies, existing corpora provide only a binary label (i.e., shouted or normal) for each speech sample, making it difficult to predict the shout intensity. Furthermore, most corpora comprise only utterances typical of hazardous situations, meaning that classifiers cannot learn to discriminate such utterances from shouts typical of less hazardous situations, such as cheers. Thus, this paper presents a novel research source, the RItsumeikan Shout Corpus (RISC), which contains wide variety types of shouted speech samples collected in recording experiments. Each shouted speech sample in RISC has a shout type and is also assigned shout intensity ratings via a crowdsourcing service. We also present a comprehensive performance comparison among deep learning approaches for speech type classification tasks and a shout intensity prediction task. The results show that feature learning based on the spectral and cepstral domains achieves high performance, no matter which network architecture is used. The results also demonstrate that shout type classification and intensity prediction are still challenging tasks, and RISC is expected to contribute to further development in this research area.
Large language models (LLMs) can be used to generate text data for training and evaluating other models. However, creating high-quality datasets with LLMs can be challenging. In this work, we explore human-AI partnerships to facilitate high diversity and accuracy in LLM-based text data generation. We first examine two approaches to diversify text generation: 1) logit suppression, which minimizes the generation of languages that have already been frequently generated, and 2) temperature sampling, which flattens the token sampling probability. We found that diversification approaches can increase data diversity but often at the cost of data accuracy (i.e., text and labels being appropriate for the target domain). To address this issue, we examined two human interventions, 1) label replacement (LR), correcting misaligned labels, and 2) out-of-scope filtering (OOSF), removing instances that are out of the user's domain of interest or to which no considered label applies. With oracle studies, we found that LR increases the absolute accuracy of models trained with diversified datasets by 14.4%. Moreover, we found that some models trained with data generated with LR interventions outperformed LLM-based few-shot classification. In contrast, OOSF was not effective in increasing model accuracy, implying the need for future work in human-in-the-loop text data generation.
Recently, ChatGPT, along with DALL-E-2 and Codex,has been gaining significant attention from society. As a result, many individuals have become interested in related resources and are seeking to uncover the background and secrets behind its impressive performance. In fact, ChatGPT and other Generative AI (GAI) techniques belong to the category of Artificial Intelligence Generated Content (AIGC), which involves the creation of digital content, such as images, music, and natural language, through AI models. The goal of AIGC is to make the content creation process more efficient and accessible, allowing for the production of high-quality content at a faster pace. AIGC is achieved by extracting and understanding intent information from instructions provided by human, and generating the content according to its knowledge and the intent information. In recent years, large-scale models have become increasingly important in AIGC as they provide better intent extraction and thus, improved generation results. With the growth of data and the size of the models, the distribution that the model can learn becomes more comprehensive and closer to reality, leading to more realistic and high-quality content generation. This survey provides a comprehensive review on the history of generative models, and basic components, recent advances in AIGC from unimodal interaction and multimodal interaction. From the perspective of unimodality, we introduce the generation tasks and relative models of text and image. From the perspective of multimodality, we introduce the cross-application between the modalities mentioned above. Finally, we discuss the existing open problems and future challenges in AIGC.
This manuscript portrays optimization as a process. In many practical applications the environment is so complex that it is infeasible to lay out a comprehensive theoretical model and use classical algorithmic theory and mathematical optimization. It is necessary as well as beneficial to take a robust approach, by applying an optimization method that learns as one goes along, learning from experience as more aspects of the problem are observed. This view of optimization as a process has become prominent in varied fields and has led to some spectacular success in modeling and systems that are now part of our daily lives.
A fundamental goal of scientific research is to learn about causal relationships. However, despite its critical role in the life and social sciences, causality has not had the same importance in Natural Language Processing (NLP), which has traditionally placed more emphasis on predictive tasks. This distinction is beginning to fade, with an emerging area of interdisciplinary research at the convergence of causal inference and language processing. Still, research on causality in NLP remains scattered across domains without unified definitions, benchmark datasets and clear articulations of the remaining challenges. In this survey, we consolidate research across academic areas and situate it in the broader NLP landscape. We introduce the statistical challenge of estimating causal effects, encompassing settings where text is used as an outcome, treatment, or as a means to address confounding. In addition, we explore potential uses of causal inference to improve the performance, robustness, fairness, and interpretability of NLP models. We thus provide a unified overview of causal inference for the computational linguistics community.
Convolutional neural networks (CNN) are the dominant deep neural network (DNN) architecture for computer vision. Recently, Transformer and multi-layer perceptron (MLP)-based models, such as Vision Transformer and MLP-Mixer, started to lead new trends as they showed promising results in the ImageNet classification task. In this paper, we conduct empirical studies on these DNN structures and try to understand their respective pros and cons. To ensure a fair comparison, we first develop a unified framework called SPACH which adopts separate modules for spatial and channel processing. Our experiments under the SPACH framework reveal that all structures can achieve competitive performance at a moderate scale. However, they demonstrate distinctive behaviors when the network size scales up. Based on our findings, we propose two hybrid models using convolution and Transformer modules. The resulting Hybrid-MS-S+ model achieves 83.9% top-1 accuracy with 63M parameters and 12.3G FLOPS. It is already on par with the SOTA models with sophisticated designs. The code and models will be made publicly available.