亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We introduce a new consistency-based approach for defining and solving nonnegative/positive matrix and tensor completion problems. The novelty of the framework is that instead of artificially making the problem well-posed in the form of an application-arbitrary optimization problem, e.g., minimizing a bulk structural measure such as rank or norm, we show that a single property/constraint: preserving unit-scale consistency, guarantees the existence of both a solution and, under relatively weak support assumptions, uniqueness. The framework and solution algorithms also generalize directly to tensors of arbitrary dimensions while maintaining computational complexity that is linear in problem size for fixed dimension d. In the context of recommender system (RS) applications, we prove that two reasonable properties that should be expected to hold for any solution to the RS problem are sufficient to permit uniqueness guarantees to be established within our framework. Key theoretical contributions include a general unit-consistent tensor-completion framework with proofs of its properties, e.g., consensus-order and fairness, and algorithms with optimal runtime and space complexities, e.g., O(1) term-completion with preprocessing complexity that is linear in the number of known terms of the matrix/tensor. From a practical perspective, the seamless ability of the framework to generalize to exploit high-dimensional structural relationships among key state variables, e.g., user and product attributes, offers a means for extracting significantly more information than is possible for alternative methods that cannot generalize beyond direct user-product relationships. Finally, we propose our consensus ordering property as an admissibility criterion for any proposed RS method.

相關內容

Bundle recommendation aims to provide a bundle of items to satisfy the user preference on e-commerce platform. Existing successful solutions are based on the contrastive graph learning paradigm where graph neural networks (GNNs) are employed to learn representations from user-level and bundle-level graph views with a contrastive learning module to enhance the cooperative association between different views. Nevertheless, they ignore the uncertainty issue which has a significant impact in real bundle recommendation scenarios due to the lack of discriminative information caused by highly sparsity or diversity. We further suggest that their instancewise contrastive learning fails to distinguish the semantically similar negatives (i.e., sampling bias issue), resulting in performance degradation. In this paper, we propose a novel Gaussian Graph with Prototypical Contrastive Learning (GPCL) framework to overcome these challenges. In particular, GPCL embeds each user/bundle/item as a Gaussian distribution rather than a fixed vector. We further design a prototypical contrastive learning module to capture the contextual information and mitigate the sampling bias issue. Extensive experiments demonstrate that benefiting from the proposed components, we achieve new state-of-the-art performance compared to previous methods on several public datasets. Moreover, GPCL has been deployed on real-world e-commerce platform and achieved substantial improvements.

Reduced-order models have long been used to understand the behavior of nonlinear partial differential equations (PDEs). Naturally, reduced-order modeling techniques come at the price of computational accuracy for a decrease in computation time. Optimization techniques are studied to improve either or both of these objectives and decrease the total computational cost of the problem. This paper focuses on the dynamic mode decomposition (DMD) applied to nonlinear PDEs with periodic boundary conditions. It provides a study of a newly proposed optimization framework for the DMD method called the Split DMD.

Taking advantage of contextual information can potentially boost the performance of recommender systems. In the era of big data, such side information often has several dimensions. Thus, developing decision-making algorithms to cope with such a high-dimensional context in real time is essential. That is specifically challenging when the decision-maker has a variety of items to recommend. In addition, changes in items' popularity or users' preferences can hinder the performance of the deployed recommender system due to a lack of robustness to distribution shifts in the environment. In this paper, we build upon the linear contextual multi-armed bandit framework to address this problem. We develop a decision-making policy for a linear bandit problem with high-dimensional feature vectors, a large set of arms, and non-stationary reward-generating processes. Our Thompson sampling-based policy reduces the dimension of feature vectors using random projection and uses exponentially increasing weights to decrease the influence of past observations with time. Our proposed recommender system employs this policy to learn the users' item preferences online while minimizing runtime. We prove a regret bound that scales as a factor of the reduced dimension instead of the original one. To evaluate our proposed recommender system numerically, we apply it to three real-world datasets. The theoretical and numerical results demonstrate the effectiveness of our proposed algorithm in making a trade-off between computational complexity and regret performance compared to the state-of-the-art.

Recently Chen and Poor initiated the study of learning mixtures of linear dynamical systems. While linear dynamical systems already have wide-ranging applications in modeling time-series data, using mixture models can lead to a better fit or even a richer understanding of underlying subpopulations represented in the data. In this work we give a new approach to learning mixtures of linear dynamical systems that is based on tensor decompositions. As a result, our algorithm succeeds without strong separation conditions on the components, and can be used to compete with the Bayes optimal clustering of the trajectories. Moreover our algorithm works in the challenging partially-observed setting. Our starting point is the simple but powerful observation that the classic Ho-Kalman algorithm is a close relative of modern tensor decomposition methods for learning latent variable models. This gives us a playbook for how to extend it to work with more complicated generative models.

Machine learning has made remarkable advancements, but confidently utilising learning-enabled components in safety-critical domains still poses challenges. Among the challenges, it is known that a rigorous, yet practical, way of achieving safety guarantees is one of the most prominent. In this paper, we first discuss the engineering and research challenges associated with the design and verification of such systems. Then, based on the observation that existing works cannot actually achieve provable guarantees, we promote a two-step verification method for the ultimate achievement of provable statistical guarantees.

We consider the problem of discovering $K$ related Gaussian directed acyclic graphs (DAGs), where the involved graph structures share a consistent causal order and sparse unions of supports. Under the multi-task learning setting, we propose a $l_1/l_2$-regularized maximum likelihood estimator (MLE) for learning $K$ linear structural equation models. We theoretically show that the joint estimator, by leveraging data across related tasks, can achieve a better sample complexity for recovering the causal order (or topological order) than separate estimations. Moreover, the joint estimator is able to recover non-identifiable DAGs, by estimating them together with some identifiable DAGs. Lastly, our analysis also shows the consistency of union support recovery of the structures. To allow practical implementation, we design a continuous optimization problem whose optimizer is the same as the joint estimator and can be approximated efficiently by an iterative algorithm. We validate the theoretical analysis and the effectiveness of the joint estimator in experiments.

Recommender systems play a fundamental role in web applications in filtering massive information and matching user interests. While many efforts have been devoted to developing more effective models in various scenarios, the exploration on the explainability of recommender systems is running behind. Explanations could help improve user experience and discover system defects. In this paper, after formally introducing the elements that are related to model explainability, we propose a novel explainable recommendation model through improving the transparency of the representation learning process. Specifically, to overcome the representation entangling problem in traditional models, we revise traditional graph convolution to discriminate information from different layers. Also, each representation vector is factorized into several segments, where each segment relates to one semantic aspect in data. Different from previous work, in our model, factor discovery and representation learning are simultaneously conducted, and we are able to handle extra attribute information and knowledge. In this way, the proposed model can learn interpretable and meaningful representations for users and items. Unlike traditional methods that need to make a trade-off between explainability and effectiveness, the performance of our proposed explainable model is not negatively affected after considering explainability. Finally, comprehensive experiments are conducted to validate the performance of our model as well as explanation faithfulness.

Properly handling missing data is a fundamental challenge in recommendation. Most present works perform negative sampling from unobserved data to supply the training of recommender models with negative signals. Nevertheless, existing negative sampling strategies, either static or adaptive ones, are insufficient to yield high-quality negative samples --- both informative to model training and reflective of user real needs. In this work, we hypothesize that item knowledge graph (KG), which provides rich relations among items and KG entities, could be useful to infer informative and factual negative samples. Towards this end, we develop a new negative sampling model, Knowledge Graph Policy Network (KGPolicy), which works as a reinforcement learning agent to explore high-quality negatives. Specifically, by conducting our designed exploration operations, it navigates from the target positive interaction, adaptively receives knowledge-aware negative signals, and ultimately yields a potential negative item to train the recommender. We tested on a matrix factorization (MF) model equipped with KGPolicy, and it achieves significant improvements over both state-of-the-art sampling methods like DNS and IRGAN, and KG-enhanced recommender models like KGAT. Further analyses from different angles provide insights of knowledge-aware sampling. We release the codes and datasets at //github.com/xiangwang1223/kgpolicy.

To address the sparsity and cold start problem of collaborative filtering, researchers usually make use of side information, such as social networks or item attributes, to improve recommendation performance. This paper considers the knowledge graph as the source of side information. To address the limitations of existing embedding-based and path-based methods for knowledge-graph-aware recommendation, we propose Ripple Network, an end-to-end framework that naturally incorporates the knowledge graph into recommender systems. Similar to actual ripples propagating on the surface of water, Ripple Network stimulates the propagation of user preferences over the set of knowledge entities by automatically and iteratively extending a user's potential interests along links in the knowledge graph. The multiple "ripples" activated by a user's historically clicked items are thus superposed to form the preference distribution of the user with respect to a candidate item, which could be used for predicting the final clicking probability. Through extensive experiments on real-world datasets, we demonstrate that Ripple Network achieves substantial gains in a variety of scenarios, including movie, book and news recommendation, over several state-of-the-art baselines.

Recommender System (RS) is a hot area where artificial intelligence (AI) techniques can be effectively applied to improve performance. Since the well-known Netflix Challenge, collaborative filtering (CF) has become the most popular and effective recommendation method. Despite their success in CF, various AI techniques still have to face the data sparsity and cold start problems. Previous works tried to solve these two problems by utilizing auxiliary information, such as social connections among users and meta-data of items. However, they process different types of information separately, leading to information loss. In this work, we propose to utilize Heterogeneous Information Network (HIN), which is a natural and general representation of different types of data, to enhance CF-based recommending methods. HIN-based recommender systems face two problems: how to represent high-level semantics for recommendation and how to fuse the heterogeneous information to recommend. To address these problems, we propose to applying meta-graph to HIN-based RS and solve the information fusion problem with a "matrix factorization (MF) + factorization machine (FM)" framework. For the "MF" part, we obtain user-item similarity matrices from each meta-graph and adopt low-rank matrix approximation to get latent features for both users and items. For the "FM" part, we propose to apply FM with Group lasso (FMG) on the obtained features to simultaneously predict missing ratings and select useful meta-graphs. Experimental results on two large real-world datasets, i.e., Amazon and Yelp, show that our proposed approach is better than that of the state-of-the-art FM and other HIN-based recommending methods.

北京阿比特科技有限公司