In a recent paper published in the Journal of Language Evolution, Kauhanen, Einhaus & Walkden (//doi.org/10.1093/jole/lzad005, KEW) challenge the results presented in one of my papers (Koplenig, Royal Society Open Science, 6, 181274 (2019), //doi.org/10.1098/rsos.181274), in which I tried to show through a series of statistical analyses that large numbers of L2 (second language) speakers do not seem to affect the (grammatical or statistical) complexity of a language. To this end, I focus on the way in which the Ethnologue assesses language status: a language is characterised as vehicular if, in addition to being used by L1 (first language) speakers, it should also have a significant number of L2 users. KEW criticise both the use of vehicularity as a (binary) indicator of whether a language has a significant number of L2 users and the idea of imputing a zero proportion of L2 speakers to non-vehicular languages whenever a direct estimate of that proportion is unavailable. While I recognise the importance of post-publication commentary on published research, I show in this rejoinder that both points of criticism are explicitly mentioned and analysed in my paper. In addition, I also comment on other points raised by KEW and demonstrate that both alternative analyses offered by KEW do not stand up to closer scrutiny.
How do language models "think"? This paper formulates a probabilistic cognitive model called the bounded pragmatic speaker, which can characterize the operation of different variations of language models. Specifically, we demonstrate that large language models fine-tuned with reinforcement learning from human feedback (Ouyang et al., 2022) embody a model of thought that conceptually resembles a fast-and-slow model (Kahneman, 2011), which psychologists have attributed to humans. We discuss the limitations of reinforcement learning from human feedback as a fast-and-slow model of thought and propose avenues for expanding this framework. In essence, our research highlights the value of adopting a cognitive probabilistic modeling approach to gain insights into the comprehension, evaluation, and advancement of language models.
Context. Algorithmic racism is the term used to describe the behavior of technological solutions that constrains users based on their ethnicity. Lately, various data-driven software systems have been reported to discriminate against Black people, either for the use of biased data sets or due to the prejudice propagated by software professionals in their code. As a result, Black people are experiencing disadvantages in accessing technology-based services, such as housing, banking, and law enforcement. Goal. This study aims to explore algorithmic racism from the perspective of software professionals. Method. A survey questionnaire was applied to explore the understanding of software practitioners on algorithmic racism, and data analysis was conducted using descriptive statistics and coding techniques. Results. We obtained answers from a sample of 73 software professionals discussing their understanding and perspectives on algorithmic racism in software development. Our results demonstrate that the effects of algorithmic racism are well-known among practitioners. However, there is no consensus on how the problem can be effectively addressed in software engineering. In this paper, some solutions to the problem are proposed based on the professionals' narratives. Conclusion. Combining technical and social strategies, including training on structural racism for software professionals, is the most promising way to address the algorithmic racism problem and its effects on the software solutions delivered to our society.
Deaf or hard-of-hearing (DHH) speakers typically have atypical speech caused by deafness. With the growing support of speech-based devices and software applications, more work needs to be done to make these devices inclusive to everyone. To do so, we analyze the use of openly-available automatic speech recognition (ASR) tools with a DHH Japanese speaker dataset. As these out-of-the-box ASR models typically do not perform well on DHH speech, we provide a thorough analysis of creating personalized ASR systems. We collected a large DHH speaker dataset of four speakers totaling around 28.05 hours and thoroughly analyzed the performance of different training frameworks by varying the training data sizes. Our findings show that 1000 utterances (or 1-2 hours) from a target speaker can already significantly improve the model performance with minimal amount of work needed, thus we recommend researchers to collect at least 1000 utterances to make an efficient personalized ASR system. In cases where 1000 utterances is difficult to collect, we also discover significant improvements in using previously proposed data augmentation techniques such as intermediate fine-tuning when only 200 utterances are available.
Transformer based pre-trained models such as BERT and its variants, which are trained on large corpora, have demonstrated tremendous success for natural language processing (NLP) tasks. Most of academic works are based on the English language; however, the number of multilingual and language specific studies increase steadily. Furthermore, several studies claimed that language specific models outperform multilingual models in various tasks. Therefore, the community tends to train or fine-tune the models for the language of their case study, specifically. In this paper, we focus on Turkish maps data and thoroughly evaluate both multilingual and Turkish based BERT, DistilBERT, ELECTRA and RoBERTa. Besides, we also propose a MultiLayer Perceptron (MLP) for fine-tuning BERT in addition to the standard approach of one-layer fine-tuning. For the dataset, a mid-sized Address Parsing corpus taken with a relatively high quality is constructed. Conducted experiments on this dataset indicate that Turkish language specific models with MLP fine-tuning yields slightly better results when compared to the multilingual fine-tuned models. Moreover, visualization of address tokens' representations further indicates the effectiveness of BERT variants for classifying a variety of addresses.
We consider the problem of online allocation subject to a long-term fairness penalty. Contrary to existing works, however, we do not assume that the decision-maker observes the protected attributes -- which is often unrealistic in practice. Instead they can purchase data that help estimate them from sources of different quality; and hence reduce the fairness penalty at some cost. We model this problem as a multi-armed bandit problem where each arm corresponds to the choice of a data source, coupled with the online allocation problem. We propose an algorithm that jointly solves both problems and show that it has a regret bounded by $\mathcal{O}(\sqrt{T})$. A key difficulty is that the rewards received by selecting a source are correlated by the fairness penalty, which leads to a need for randomization (despite a stochastic setting). Our algorithm takes into account contextual information available before the source selection, and can adapt to many different fairness notions. We also show that in some instances, the estimates used can be learned on the fly.
While the emergence of powerful language models along with Chain-of-thought prompting has made automation more and more omnipresent, it sometimes demonstrates its weakness in long-term or multi-step logical reasoning. For example, users don't always get desirable answers for complex mathematical problems without human involvement. Against this background, we present the Manual Correction System (MCS) -- a human-in-the-loop system enhanced by Chain-of-Thought prompting, which explores how manual correction of sub-logics in rationales can improve LLM's reasoning performance. Moving one step forward, considering a system with human-in-the-loop involves more than having humans improve performance but also controlling the cost. Therefore, we post a Cost-utility Analysis Model for Human-in-the-Loop systems (CAMLOP) based on classical economics theory to analyze, quantify and balance the utility and the corresponding cost. We conduct experiments of MCS and CAMLOP with twelve datasets. A significant advantage w.r.t cost and utility proves its superiority over strong baselines.
The estimation of unknown parameters in simulations, also known as calibration, is crucial for practical management of epidemics and prediction of pandemic risk. A simple yet widely used approach is to estimate the parameters by minimizing the sum of the squared distances between actual observations and simulation outputs. It is shown in this paper that this method is inefficient, particularly when the epidemic models are developed based on certain simplifications of reality, also known as imperfect models which are commonly used in practice. To address this issue, a new estimator is introduced that is asymptotically consistent, has a smaller estimation variance than the least squares estimator, and achieves the semiparametric efficiency. Numerical studies are performed to examine the finite sample performance. The proposed method is applied to the analysis of the COVID-19 pandemic for 20 countries based on the SEIR (Susceptible-Exposed-Infectious-Recovered) model with both deterministic and stochastic simulations. The estimation of the parameters, including the basic reproduction number and the average incubation period, reveal the risk of disease outbreaks in each country and provide insights to the design of public health interventions.
The increased use of AI systems is associated with multi-faceted societal, environmental, and economic consequences. These include non-transparent decision-making processes, discrimination, increasing inequalities, rising energy consumption and greenhouse gas emissions in AI model development and application, and an increasing concentration of economic power. By considering the multi-dimensionality of sustainability, this paper takes steps towards substantiating the call for an overarching perspective on "sustainable AI". It presents the SCAIS Framework (Sustainability Criteria and Indicators for Artificial Intelligence Systems) which contains a set 19 sustainability criteria for sustainable AI and 67 indicators that is based on the results of a critical review and expert workshops. This interdisciplinary approach contributes a unique holistic perspective to facilitate and structure the discourse on sustainable AI. Further, it provides a concrete framework that lays the foundation for developing standards and tools to support the conscious development and application of AI systems.
Large language models (LLMs) have significantly advanced the field of natural language processing (NLP), providing a highly useful, task-agnostic foundation for a wide range of applications. The great promise of LLMs as general task solvers motivated people to extend their functionality largely beyond just a ``chatbot'', and use it as an assistant or even replacement for domain experts and tools in specific domains such as healthcare, finance, and education. However, directly applying LLMs to solve sophisticated problems in specific domains meets many hurdles, caused by the heterogeneity of domain data, the sophistication of domain knowledge, the uniqueness of domain objectives, and the diversity of the constraints (e.g., various social norms, cultural conformity, religious beliefs, and ethical standards in the domain applications). To fill such a gap, explosively-increase research, and practices have been conducted in very recent years on the domain specialization of LLMs, which, however, calls for a comprehensive and systematic review to better summarizes and guide this promising domain. In this survey paper, first, we propose a systematic taxonomy that categorizes the LLM domain-specialization techniques based on the accessibility to LLMs and summarizes the framework for all the subcategories as well as their relations and differences to each other. We also present a comprehensive taxonomy of critical application domains that can benefit from specialized LLMs, discussing their practical significance and open challenges. Furthermore, we offer insights into the current research status and future trends in this area.
Foundation models pretrained on diverse data at scale have demonstrated extraordinary capabilities in a wide range of vision and language tasks. When such models are deployed in real world environments, they inevitably interface with other entities and agents. For example, language models are often used to interact with human beings through dialogue, and visual perception models are used to autonomously navigate neighborhood streets. In response to these developments, new paradigms are emerging for training foundation models to interact with other agents and perform long-term reasoning. These paradigms leverage the existence of ever-larger datasets curated for multimodal, multitask, and generalist interaction. Research at the intersection of foundation models and decision making holds tremendous promise for creating powerful new systems that can interact effectively across a diverse range of applications such as dialogue, autonomous driving, healthcare, education, and robotics. In this manuscript, we examine the scope of foundation models for decision making, and provide conceptual tools and technical background for understanding the problem space and exploring new research directions. We review recent approaches that ground foundation models in practical decision making applications through a variety of methods such as prompting, conditional generative modeling, planning, optimal control, and reinforcement learning, and discuss common challenges and open problems in the field.