亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Partitioning a set of elements into an unknown number of mutually exclusive subsets is essential in many machine learning problems. However, assigning elements, such as samples in a dataset or neurons in a network layer, to an unknown and discrete number of subsets is inherently non-differentiable, prohibiting end-to-end gradient-based optimization of parameters. We overcome this limitation by proposing a novel two-step method for inferring partitions, which allows its usage in variational inference tasks. This new approach enables reparameterized gradients with respect to the parameters of the new random partition model. Our method works by inferring the number of elements per subset and, second, by filling these subsets in a learned order. We highlight the versatility of our general-purpose approach on three different challenging experiments: variational clustering, inference of shared and independent generative factors under weak supervision, and multitask learning.

相關內容

We revisit the classic Pandora's Box (PB) problem under correlated distributions on the box values. Recent work of arXiv:1911.01632 obtained constant approximate algorithms for a restricted class of policies for the problem that visit boxes in a fixed order. In this work, we study the complexity of approximating the optimal policy which may adaptively choose which box to visit next based on the values seen so far. Our main result establishes an approximation-preserving equivalence of PB to the well studied Uniform Decision Tree (UDT) problem from stochastic optimization and a variant of the Min-Sum Set Cover ($\text{MSSC}_f$) problem. For distributions of support $m$, UDT admits a $\log m$ approximation, and while a constant factor approximation in polynomial time is a long-standing open problem, constant factor approximations are achievable in subexponential time (arXiv:1906.11385). Our main result implies that the same properties hold for PB and $\text{MSSC}_f$. We also study the case where the distribution over values is given more succinctly as a mixture of $m$ product distributions. This problem is again related to a noisy variant of the Optimal Decision Tree which is significantly more challenging. We give a constant-factor approximation that runs in time $n^{ \tilde O( m^2/\varepsilon^2 ) }$ when the mixture components on every box are either identical or separated in TV distance by $\varepsilon$.

With the fast development of reconfigurable intelligent surface (RIS), the network topology becomes more complex and varied, which makes the network design and analysis extremely challenging. Most of the current works adopt the binary system stochastic geometric, missing the coupling relationships between the direct and reflected paths caused by RISs. In this paper, we first define the typical triangle which consists of a base station (BS), a RIS and a user equipment (UE) as the basic ternary network unit in a RIS-assisted ultra-dense network (UDN). In addition, we extend the Campbell's theorem to the ternary system and present the ternary probability generating functional (PGFL) of the stochastic geometry. Based on the ternary stochastic geometry theory, we derive and analyze the coverage probability, area spectral efficiency (ASE), area energy efficiency (AEE) and energy coverage efficiency (ECE) of the RIS-assisted UDN system. Simulation results show that the RISs can improve the system performances, especially for the UE who has a high signal to interference plus noise ratio (SINR), as if the introduced RIS brings in Matthew effect. This phenomenon of RIS is appealing for guiding the design of complex networks.

The standard formulation of the PDE system of Mean Field Games (MFG) requires the differentiability of the Hamiltonian. However in many cases, the structure of the underlying optimal problem leads to a convex but non-differentiable Hamiltonian. For time-dependent MFG systems, we introduce a generalization of the problem as a Partial Differential Inclusions (PDI) by interpreting the derivative of the Hamiltonian in terms of the subdifferential set. In particular, we prove the existence and uniqueness of weak solutions to the resulting MFG PDI system under standard assumptions in the literature. We propose a monotone stabilized finite element discretization of the problem, using conforming affine elements in space and an implicit Euler discretization in time with mass-lumping. We prove the strong convergence in $L^2(H^1)$ of the value function approximations, and strong convergence in $L^p(L^2)$ of the density function approximations, together with strong $L^2$-convergence of the value function approximations at the initial time.

Wheeler automata were introduced in 2017 as a tool to generalize existing indexing and compression techniques based on the Burrows-Wheeler transform. Intuitively, an automaton is said to be Wheeler if there exists a total order on its states reflecting the co-lexicographic order of the strings labeling the automaton's paths; this property makes it possible to represent the automaton's topology in a constant number of bits per transition, as well as efficiently solving pattern matching queries on its accepted regular language. After their introduction, Wheeler automata have been the subject of a prolific line of research, both from the algorithmic and language-theoretic points of view. A recurring issue faced in these studies is the lack of large datasets of Wheeler automata on which the developed algorithms and theories could be tested. One possible way to overcome this issue is to generate random Wheeler automata. Motivated by this observation, in this paper we initiate the theoretical study of random Wheeler automata, focusing on the deterministic case (Wheeler DFAs -- WDFAs). We start by extending the Erd\H{o}s-R\'enyi random graph model to WDFAs, and proceed by providing an algorithm generating uniform WDFAs according to this model. Our algorithm generates a uniform WDFA with $n$ states, $m$ transitions, and alphabet's cardinality $\sigma$ in $O(m)$ expected time ($O(m\log m)$ worst-case time w.h.p.) and constant working space for all alphabets of size $\sigma \le m/\ln m$. As a by-product, we also give formulas for the number of distinct WDFAs and obtain that $ n\sigma + (n - \sigma) \log \sigma$ bits are necessary and sufficient to encode a WDFA with $n$ states and alphabet of size $\sigma$, up to an additive $\Theta(n)$ term. We present an implementation of our algorithm and show that it is extremely fast in practice, with a throughput of over 8 million transitions per second.

We introduce a new method of estimation of parameters in semiparametric and nonparametric models. The method is based on estimating equations that are $U$-statistics in the observations. The $U$-statistics are based on higher order influence functions that extend ordinary linear influence functions of the parameter of interest, and represent higher derivatives of this parameter. For parameters for which the representation cannot be perfect the method leads to a bias-variance trade-off, and results in estimators that converge at a slower than $\sqrt n$-rate. In a number of examples the resulting rate can be shown to be optimal. We are particularly interested in estimating parameters in models with a nuisance parameter of high dimension or low regularity, where the parameter of interest cannot be estimated at $\sqrt n$-rate, but we also consider efficient $\sqrt n$-estimation using novel nonlinear estimators. The general approach is applied in detail to the example of estimating a mean response when the response is not always observed.

Classic algorithms and machine learning systems like neural networks are both abundant in everyday life. While classic computer science algorithms are suitable for precise execution of exactly defined tasks such as finding the shortest path in a large graph, neural networks allow learning from data to predict the most likely answer in more complex tasks such as image classification, which cannot be reduced to an exact algorithm. To get the best of both worlds, this thesis explores combining both concepts leading to more robust, better performing, more interpretable, more computationally efficient, and more data efficient architectures. The thesis formalizes the idea of algorithmic supervision, which allows a neural network to learn from or in conjunction with an algorithm. When integrating an algorithm into a neural architecture, it is important that the algorithm is differentiable such that the architecture can be trained end-to-end and gradients can be propagated back through the algorithm in a meaningful way. To make algorithms differentiable, this thesis proposes a general method for continuously relaxing algorithms by perturbing variables and approximating the expectation value in closed form, i.e., without sampling. In addition, this thesis proposes differentiable algorithms, such as differentiable sorting networks, differentiable renderers, and differentiable logic gate networks. Finally, this thesis presents alternative training strategies for learning with algorithms.

The adaptive processing of structured data is a long-standing research topic in machine learning that investigates how to automatically learn a mapping from a structured input to outputs of various nature. Recently, there has been an increasing interest in the adaptive processing of graphs, which led to the development of different neural network-based methodologies. In this thesis, we take a different route and develop a Bayesian Deep Learning framework for graph learning. The dissertation begins with a review of the principles over which most of the methods in the field are built, followed by a study on graph classification reproducibility issues. We then proceed to bridge the basic ideas of deep learning for graphs with the Bayesian world, by building our deep architectures in an incremental fashion. This framework allows us to consider graphs with discrete and continuous edge features, producing unsupervised embeddings rich enough to reach the state of the art on several classification tasks. Our approach is also amenable to a Bayesian nonparametric extension that automatizes the choice of almost all model's hyper-parameters. Two real-world applications demonstrate the efficacy of deep learning for graphs. The first concerns the prediction of information-theoretic quantities for molecular simulations with supervised neural models. After that, we exploit our Bayesian models to solve a malware-classification task while being robust to intra-procedural code obfuscation techniques. We conclude the dissertation with an attempt to blend the best of the neural and Bayesian worlds together. The resulting hybrid model is able to predict multimodal distributions conditioned on input graphs, with the consequent ability to model stochasticity and uncertainty better than most works. Overall, we aim to provide a Bayesian perspective into the articulated research field of deep learning for graphs.

Few sample learning (FSL) is significant and challenging in the field of machine learning. The capability of learning and generalizing from very few samples successfully is a noticeable demarcation separating artificial intelligence and human intelligence since humans can readily establish their cognition to novelty from just a single or a handful of examples whereas machine learning algorithms typically entail hundreds or thousands of supervised samples to guarantee generalization ability. Despite the long history dated back to the early 2000s and the widespread attention in recent years with booming deep learning technologies, little surveys or reviews for FSL are available until now. In this context, we extensively review 200+ papers of FSL spanning from the 2000s to 2019 and provide a timely and comprehensive survey for FSL. In this survey, we review the evolution history as well as the current progress on FSL, categorize FSL approaches into the generative model based and discriminative model based kinds in principle, and emphasize particularly on the meta learning based FSL approaches. We also summarize several recently emerging extensional topics of FSL and review the latest advances on these topics. Furthermore, we highlight the important FSL applications covering many research hotspots in computer vision, natural language processing, audio and speech, reinforcement learning and robotic, data analysis, etc. Finally, we conclude the survey with a discussion on promising trends in the hope of providing guidance and insights to follow-up researches.

Reasoning with knowledge expressed in natural language and Knowledge Bases (KBs) is a major challenge for Artificial Intelligence, with applications in machine reading, dialogue, and question answering. General neural architectures that jointly learn representations and transformations of text are very data-inefficient, and it is hard to analyse their reasoning process. These issues are addressed by end-to-end differentiable reasoning systems such as Neural Theorem Provers (NTPs), although they can only be used with small-scale symbolic KBs. In this paper we first propose Greedy NTPs (GNTPs), an extension to NTPs addressing their complexity and scalability limitations, thus making them applicable to real-world datasets. This result is achieved by dynamically constructing the computation graph of NTPs and including only the most promising proof paths during inference, thus obtaining orders of magnitude more efficient models. Then, we propose a novel approach for jointly reasoning over KBs and textual mentions, by embedding logic facts and natural language sentences in a shared embedding space. We show that GNTPs perform on par with NTPs at a fraction of their cost while achieving competitive link prediction results on large datasets, providing explanations for predictions, and inducing interpretable models. Source code, datasets, and supplementary material are available online at //github.com/uclnlp/gntp.

Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.

北京阿比特科技有限公司