We propose a novel task-agnostic in-domain pre-training method that sits between generic pre-training and fine-tuning. Our approach selectively masks in-domain keywords, i.e., words that provide a compact representation of the target domain. We identify such keywords using KeyBERT (Grootendorst, 2020). We evaluate our approach using six different settings: three datasets combined with two distinct pre-trained language models (PLMs). Our results reveal that the fine-tuned PLMs adapted using our in-domain pre-training strategy outperform PLMs that used in-domain pre-training with random masking as well as those that followed the common pre-train-then-fine-tune paradigm. Further, the overhead of identifying in-domain keywords is reasonable, e.g., 7-15% of the pre-training time (for two epochs) for BERT Large (Devlin et al., 2019).
Recently, utilizing deep neural networks to build the opendomain dialogue models has become a hot topic. However, the responses generated by these models suffer from many problems such as responses not being contextualized and tend to generate generic responses that lack information content, damaging the user's experience seriously. Therefore, many studies try introducing more information into the dialogue models to make the generated responses more vivid and informative. Unlike them, this paper improves the quality of generated responses by learning the implicit pattern information between contexts and responses in the training samples. In this paper, we first build an open-domain dialogue model based on the pre-trained language model (i.e., GPT-2). And then, an improved scheduled sampling method is proposed for pre-trained models, by which the responses can be used to guide the response generation in the training phase while avoiding the exposure bias problem. More importantly, we design a response-aware mechanism for mining the implicit pattern information between contexts and responses so that the generated replies are more diverse and approximate to human replies. Finally, we evaluate the proposed model (RAD) on the Persona-Chat and DailyDialog datasets; and the experimental results show that our model outperforms the baselines on most automatic and manual metrics.
Large Language Models (LLMs) have made significant strides in both scientific research and practical applications. Existing studies have demonstrated the state-of-the-art (SOTA) performance of LLMs in various natural language processing tasks. However, the question of how to further enhance LLMs' performance in specific task using prompting strategies remains a pivotal concern. This paper explores the enhancement of LLMs' performance in sentiment analysis through the application of prompting strategies. We formulate the process of prompting for sentiment analysis tasks and introduce two novel strategies tailored for sentiment analysis: RolePlaying (RP) prompting and Chain-of-thought (CoT) prompting. Specifically, we also propose the RP-CoT prompting strategy which is a combination of RP prompting and CoT prompting. We conduct comparative experiments on three distinct domain datasets to evaluate the effectiveness of the proposed sentiment analysis strategies. The results demonstrate that the adoption of the proposed prompting strategies leads to a increasing enhancement in sentiment analysis accuracy. Further, the CoT prompting strategy exhibits a notable impact on implicit sentiment analysis, with the RP-CoT prompting strategy delivering the most superior performance among all strategies.
Using additional training data is known to improve the results, especially for medical image 3D segmentation where there is a lack of training material and the model needs to generalize well from few available data. However, the new data could have been acquired using other instruments and preprocessed such its distribution is significantly different from the original training data. Therefore, we study techniques which ameliorate domain shift during training so that the additional data becomes better usable for preprocessing and training together with the original data. Our results show that transforming the additional data using histogram matching has better results than using simple normalization.
Molecular property prediction with deep learning has gained much attention over the past years. Owing to the scarcity of labeled molecules, there has been growing interest in self-supervised learning methods that learn generalizable molecular representations from unlabeled data. Molecules are typically treated as 2D topological graphs in modeling, but it has been discovered that their 3D geometry is of great importance in determining molecular functionalities. In this paper, we propose the Geometry-aware line graph transformer (Galformer) pre-training, a novel self-supervised learning framework that aims to enhance molecular representation learning with 2D and 3D modalities. Specifically, we first design a dual-modality line graph transformer backbone to encode the topological and geometric information of a molecule. The designed backbone incorporates effective structural encodings to capture graph structures from both modalities. Then we devise two complementary pre-training tasks at the inter and intra-modality levels. These tasks provide properly supervised information and extract discriminative 2D and 3D knowledge from unlabeled molecules. Finally, we evaluate Galformer against six state-of-the-art baselines on twelve property prediction benchmarks via downstream fine-tuning. Experimental results show that Galformer consistently outperforms all baselines on both classification and regression tasks, demonstrating its effectiveness.
We propose an unsupervised approach for training separation models from scratch using RemixIT and Self-Remixing, which are recently proposed self-supervised learning methods for refining pre-trained models. They first separate mixtures with a teacher model and create pseudo-mixtures by shuffling and remixing the separated signals. A student model is then trained to separate the pseudo-mixtures using either the teacher's outputs or the initial mixtures as supervision. To refine the teacher's outputs, the teacher's weights are updated with the student's weights. While these methods originally assumed that the teacher is pre-trained, we show that they are capable of training models from scratch. We also introduce a simple remixing method to stabilize training. Experimental results demonstrate that the proposed approach outperforms mixture invariant training, which is currently the only available approach for training a monaural separation model from scratch.
In the past few years, the emergence of pre-training models has brought uni-modal fields such as computer vision (CV) and natural language processing (NLP) to a new era. Substantial works have shown they are beneficial for downstream uni-modal tasks and avoid training a new model from scratch. So can such pre-trained models be applied to multi-modal tasks? Researchers have explored this problem and made significant progress. This paper surveys recent advances and new frontiers in vision-language pre-training (VLP), including image-text and video-text pre-training. To give readers a better overall grasp of VLP, we first review its recent advances from five aspects: feature extraction, model architecture, pre-training objectives, pre-training datasets, and downstream tasks. Then, we summarize the specific VLP models in detail. Finally, we discuss the new frontiers in VLP. To the best of our knowledge, this is the first survey on VLP. We hope that this survey can shed light on future research in the VLP field.
Pre-trained Language Models (PLMs) have achieved great success in various Natural Language Processing (NLP) tasks under the pre-training and fine-tuning paradigm. With large quantities of parameters, PLMs are computation-intensive and resource-hungry. Hence, model pruning has been introduced to compress large-scale PLMs. However, most prior approaches only consider task-specific knowledge towards downstream tasks, but ignore the essential task-agnostic knowledge during pruning, which may cause catastrophic forgetting problem and lead to poor generalization ability. To maintain both task-agnostic and task-specific knowledge in our pruned model, we propose ContrAstive Pruning (CAP) under the paradigm of pre-training and fine-tuning. It is designed as a general framework, compatible with both structured and unstructured pruning. Unified in contrastive learning, CAP enables the pruned model to learn from the pre-trained model for task-agnostic knowledge, and fine-tuned model for task-specific knowledge. Besides, to better retain the performance of the pruned model, the snapshots (i.e., the intermediate models at each pruning iteration) also serve as effective supervisions for pruning. Our extensive experiments show that adopting CAP consistently yields significant improvements, especially in extremely high sparsity scenarios. With only 3% model parameters reserved (i.e., 97% sparsity), CAP successfully achieves 99.2% and 96.3% of the original BERT performance in QQP and MNLI tasks. In addition, our probing experiments demonstrate that the model pruned by CAP tends to achieve better generalization ability.
Recently pre-trained language representation models such as BERT have shown great success when fine-tuned on downstream tasks including information retrieval (IR). However, pre-training objectives tailored for ad-hoc retrieval have not been well explored. In this paper, we propose Pre-training with Representative wOrds Prediction (PROP) for ad-hoc retrieval. PROP is inspired by the classical statistical language model for IR, specifically the query likelihood model, which assumes that the query is generated as the piece of text representative of the "ideal" document. Based on this idea, we construct the representative words prediction (ROP) task for pre-training. Given an input document, we sample a pair of word sets according to the document language model, where the set with higher likelihood is deemed as more representative of the document. We then pre-train the Transformer model to predict the pairwise preference between the two word sets, jointly with the Masked Language Model (MLM) objective. By further fine-tuning on a variety of representative downstream ad-hoc retrieval tasks, PROP achieves significant improvements over baselines without pre-training or with other pre-training methods. We also show that PROP can achieve exciting performance under both the zero- and low-resource IR settings. The code and pre-trained models are available at //github.com/Albert-Ma/PROP.
Recent work pre-training Transformers with self-supervised objectives on large text corpora has shown great success when fine-tuned on downstream NLP tasks including text summarization. However, pre-training objectives tailored for abstractive text summarization have not been explored. Furthermore there is a lack of systematic evaluation across diverse domains. In this work, we propose pre-training large Transformer-based encoder-decoder models on massive text corpora with a new self-supervised objective. In PEGASUS, important sentences are removed/masked from an input document and are generated together as one output sequence from the remaining sentences, similar to an extractive summary. We evaluated our best PEGASUS model on 12 downstream summarization tasks spanning news, science, stories, instructions, emails, patents, and legislative bills. Experiments demonstrate it achieves state-of-the-art performance on all 12 downstream datasets measured by ROUGE scores. Our model also shows surprising performance on low-resource summarization, surpassing previous state-of-the-art results on 6 datasets with only 1000 examples. Finally we validated our results using human evaluation and show that our model summaries achieve human performance on multiple datasets.
We present Emu, a system that semantically enhances multilingual sentence embeddings. Our framework fine-tunes pre-trained multilingual sentence embeddings using two main components: a semantic classifier and a language discriminator. The semantic classifier improves the semantic similarity of related sentences, whereas the language discriminator enhances the multilinguality of the embeddings via multilingual adversarial training. Our experimental results based on several language pairs show that our specialized embeddings outperform the state-of-the-art multilingual sentence embedding model on the task of cross-lingual intent classification using only monolingual labeled data.