Dialogue-based relation extraction (DiaRE) aims to detect the structural information from unstructured utterances in dialogues. Existing relation extraction models may be unsatisfactory under such a conversational setting, due to the entangled logic and information sparsity issues in utterances involving multiple speakers. To this end, we introduce SOLS, a novel model which can explicitly induce speaker-oriented latent structures for better DiaRE. Specifically, we learn latent structures to capture the relationships among tokens beyond the utterance boundaries, alleviating the entangled logic issue. During the learning process, our speaker-specific regularization method progressively highlights speaker-related key clues and erases the irrelevant ones, alleviating the information sparsity issue. Experiments on three public datasets demonstrate the effectiveness of our proposed approach.
Unified understanding of neuro networks (NNs) gets the users into great trouble because they have been puzzled by what kind of rules should be obeyed to optimize the internal structure of NNs. Considering the potential capability of random graphs to alter how computation is performed, we demonstrate that they can serve as architecture generators to optimize the internal structure of NNs. To transform the random graph theory into an NN model with practical meaning and based on clarifying the input-output relationship of each neuron, we complete data feature mapping by calculating Fourier Random Features (FRFs). Under the usage of this low-operation cost approach, neurons are assigned to several groups of which connection relationships can be regarded as uniform representations of random graphs they belong to, and random arrangement fuses those neurons to establish the pattern matrix, markedly reducing manual participation and computational cost without the fixed and deep architecture. Leveraging this single neuromorphic learning model termed random graph-based neuro network (RGNN) we develop a joint classification mechanism involving information interaction between multiple RGNNs and realize significant performance improvements in supervised learning for three benchmark tasks, whereby they effectively avoid the adverse impact of the interpretability of NNs on the structure design and engineering practice.
In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.
In this paper, we present a novel method named RECON, that automatically identifies relations in a sentence (sentential relation extraction) and aligns to a knowledge graph (KG). RECON uses a graph neural network to learn representations of both the sentence as well as facts stored in a KG, improving the overall extraction quality. These facts, including entity attributes (label, alias, description, instance-of) and factual triples, have not been collectively used in the state of the art methods. We evaluate the effect of various forms of representing the KG context on the performance of RECON. The empirical evaluation on two standard relation extraction datasets shows that RECON significantly outperforms all state of the art methods on NYT Freebase and Wikidata datasets. RECON reports 87.23 F1 score (Vs 82.29 baseline) on Wikidata dataset whereas on NYT Freebase, reported values are 87.5(P@10) and 74.1(P@30) compared to the previous baseline scores of 81.3(P@10) and 63.1(P@30).
Training the generative models with minimal corpus is one of the critical challenges for building open-domain dialogue systems. Existing methods tend to use the meta-learning framework which pre-trains the parameters on all non-target tasks then fine-tunes on the target task. However, fine-tuning distinguishes tasks from the parameter perspective but ignores the model-structure perspective, resulting in similar dialogue models for different tasks. In this paper, we propose an algorithm that can customize a unique dialogue model for each task in the few-shot setting. In our approach, each dialogue model consists of a shared module, a gating module, and a private module. The first two modules are shared among all the tasks, while the third one will differentiate into different network structures to better capture the characteristics of the corresponding task. The extensive experiments on two datasets show that our method outperforms all the baselines in terms of task consistency, response quality, and diversity.
Dependency trees convey rich structural information that is proven useful for extracting relations among entities in text. However, how to effectively make use of relevant information while ignoring irrelevant information from the dependency trees remains a challenging research question. Existing approaches employing rule based hard-pruning strategies for selecting relevant partial dependency structures may not always yield optimal results. In this work, we propose Attention Guided Graph Convolutional Networks (AGGCNs), a novel model which directly takes full dependency trees as inputs. Our model can be understood as a soft-pruning approach that automatically learns how to selectively attend to the relevant sub-structures useful for the relation extraction task. Extensive results on various tasks including cross-sentence n-ary relation extraction and large-scale sentence-level relation extraction show that our model is able to better leverage the structural information of the full dependency trees, giving significantly better results than previous approaches.
We introduce SpERT, an attention model for span-based joint entity and relation extraction. Our approach employs the pre-trained Transformer network BERT as its core. We use BERT embeddings as shared inputs for a light-weight reasoning, which features entity recognition and filtering, as well as relation classification with a localized, marker-free context representation. The model is trained on strong within-sentence negative samples, which are efficiently extracted in a single BERT pass. These aspects facilitate a search over all spans in the sentence. In ablation studies, we demonstrate the benefits of pre-training, strong negative sampling and localized context. Our model outperforms prior work by up to 5% F1 score on several datasets for joint entity and relation extraction.
We propose a new method for event extraction (EE) task based on an imitation learning framework, specifically, inverse reinforcement learning (IRL) via generative adversarial network (GAN). The GAN estimates proper rewards according to the difference between the actions committed by the expert (or ground truth) and the agent among complicated states in the environment. EE task benefits from these dynamic rewards because instances and labels yield to various extents of difficulty and the gains are expected to be diverse -- e.g., an ambiguous but correctly detected trigger or argument should receive high gains -- while the traditional RL models usually neglect such differences and pay equal attention on all instances. Moreover, our experiments also demonstrate that the proposed framework outperforms state-of-the-art methods, without explicit feature engineering.
We study the problem of textual relation embedding with distant supervision. To combat the wrong labeling problem of distant supervision, we propose to embed textual relations with global statistics of relations, i.e., the co-occurrence statistics of textual and knowledge base relations collected from the entire corpus. This approach turns out to be more robust to the training noise introduced by distant supervision. On a popular relation extraction dataset, we show that the learned textual relation embedding can be used to augment existing relation extraction models and significantly improve their performance. Most remarkably, for the top 1,000 relational facts discovered by the best existing model, the precision can be improved from 83.9% to 89.3%.
We report an evaluation of the effectiveness of the existing knowledge base embedding models for relation prediction and for relation extraction on a wide range of benchmarks. We also describe a new benchmark, which is much larger and complex than previous ones, which we introduce to help validate the effectiveness of both tasks. The results demonstrate that knowledge base embedding models are generally effective for relation prediction but unable to give improvements for the state-of-art neural relation extraction model with the existing strategies, while pointing limitations of existing methods.
We present assertion based question answering (ABQA), an open domain question answering task that takes a question and a passage as inputs, and outputs a semi-structured assertion consisting of a subject, a predicate and a list of arguments. An assertion conveys more evidences than a short answer span in reading comprehension, and it is more concise than a tedious passage in passage-based QA. These advantages make ABQA more suitable for human-computer interaction scenarios such as voice-controlled speakers. Further progress towards improving ABQA requires richer supervised dataset and powerful models of text understanding. To remedy this, we introduce a new dataset called WebAssertions, which includes hand-annotated QA labels for 358,427 assertions in 55,960 web passages. To address ABQA, we develop both generative and extractive approaches. The backbone of our generative approach is sequence to sequence learning. In order to capture the structure of the output assertion, we introduce a hierarchical decoder that first generates the structure of the assertion and then generates the words of each field. The extractive approach is based on learning to rank. Features at different levels of granularity are designed to measure the semantic relevance between a question and an assertion. Experimental results show that our approaches have the ability to infer question-aware assertions from a passage. We further evaluate our approaches by incorporating the ABQA results as additional features in passage-based QA. Results on two datasets show that ABQA features significantly improve the accuracy on passage-based~QA.