亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Unmanned aerial vehicles (UAVs), specifically quadrotors, have revolutionized various industries with their maneuverability and versatility, but their safe operation in dynamic environments heavily relies on effective collision avoidance techniques. This paper introduces a novel technique for safely navigating a quadrotor along a desired route while avoiding kinematic obstacles. We propose a new constraint formulation that employs control barrier functions (CBFs) and collision cones to ensure that the relative velocity between the quadrotor and the obstacle always avoids a cone of vectors that may lead to a collision. By showing that the proposed constraint is a valid CBF for quadrotors, we are able to leverage its real-time implementation via Quadratic Programs (QPs), called the CBF-QPs. Validation includes PyBullet simulations and hardware experiments on Crazyflie 2.1, demonstrating effectiveness in static and moving obstacle scenarios. Comparative analysis with literature, especially higher order CBF-QPs, highlights the proposed approach's less conservative nature. Simulation and Hardware videos are available here: //tayalmanan28.github.io/C3BF-UAV/

相關內容

Monitoring of industrial processes is a critical capability in industry and in government to ensure reliability of production cycles, quick emergency response, and national security. Process monitoring allows users to gauge the progress of an organization in an industrial process or predict the degradation or aging of machine parts in processes taking place at a remote location. Similar to many data science applications, we usually only have access to limited raw data, such as satellite imagery, short video clips, event logs, and signatures captured by a small set of sensors. To combat data scarcity, we leverage the knowledge of Subject Matter Experts (SMEs) who are familiar with the actions of interest. SMEs provide expert knowledge of the essential activities required for task completion and the resources necessary to carry out each of these activities. Various process mining techniques have been developed for this type of analysis; typically such approaches combine theoretical process models built based on domain expert insights with ad-hoc integration of available pieces of raw data. Here, we introduce a novel mathematically sound method that integrates theoretical process models (as proposed by SMEs) with interrelated minimal Hidden Markov Models (HMM), built via nonnegative tensor factorization. Our method consolidates: (a) theoretical process models, (b) HMMs, (c) coupled nonnegative matrix-tensor factorizations, and (d) custom model selection. To demonstrate our methodology and its abilities, we apply it on simple synthetic and real world process models.

New Radio (NR) Vehicle-to-Everything (V2X) Sidelink (SL), an integral part of the 5G NR standard, is expected to revolutionize the automotive and rail industries by enabling direct and low-latency exchange of critical information between traffic participants independently of cellular networks. However, this advancement depends primarily on efficient SL resource allocation. Mode 2(a) is a well-known method for this purpose, where each node autonomously selects resources. However, this method is prone to packet collisions due to the hidden-node problem. In this paper, we propose a cooperative scheduling method that could potentially address this issue. We describe an extension of Mode 2(a) that allows nodes to share resource allocation information at two hops. Initial simulation results show a promising improvement over Mode 2(a).

Procedural noise is a fundamental component of computer graphics pipelines, offering a flexible way to generate textures that exhibit "natural" random variation. Many different types of noise exist, each produced by a separate algorithm. In this paper, we present a single generative model which can learn to generate multiple types of noise as well as blend between them. In addition, it is capable of producing spatially-varying noise blends despite not having access to such data for training. These features are enabled by training a denoising diffusion model using a novel combination of data augmentation and network conditioning techniques. Like procedural noise generators, the model's behavior is controllable via interpretable parameters and a source of randomness. We use our model to produce a variety of visually compelling noise textures. We also present an application of our model to improving inverse procedural material design; using our model in place of fixed-type noise nodes in a procedural material graph results in higher-fidelity material reconstructions without needing to know the type of noise in advance.

As technology advances, the use of Machine Learning (ML) in cybersecurity is becoming increasingly crucial to tackle the growing complexity of cyber threats. While traditional ML models can enhance cybersecurity, their high energy and resource demands limit their applications, leading to the emergence of Tiny Machine Learning (TinyML) as a more suitable solution for resource-constrained environments. TinyML is widely applied in areas such as smart homes, healthcare, and industrial automation. TinyML focuses on optimizing ML algorithms for small, low-power devices, enabling intelligent data processing directly on edge devices. This paper provides a comprehensive review of common challenges of TinyML techniques, such as power consumption, limited memory, and computational constraints; it also explores potential solutions to these challenges, such as energy harvesting, computational optimization techniques, and transfer learning for privacy preservation. On the other hand, this paper discusses TinyML's applications in advancing cybersecurity for Electric Vehicle Charging Infrastructures (EVCIs) as a representative use case. It presents an experimental case study that enhances cybersecurity in EVCI using TinyML, evaluated against traditional ML in terms of reduced delay and memory usage, with a slight trade-off in accuracy. Additionally, the study includes a practical setup using the ESP32 microcontroller in the PlatformIO environment, which provides a hands-on assessment of TinyML's application in cybersecurity for EVCI.

The demonstrated code-understanding capability of LLMs raises the question of whether they can be used for automated program verification, a task that demands high-level abstract reasoning about program properties that is challenging for verification tools. We propose a general methodology to combine the power of LLMs and automated reasoners for automated program verification. We formally describe this methodology as a set of transition rules and prove its soundness. We instantiate the calculus as a sound automated verification procedure and demonstrate practical improvements on a set of synthetic and competition benchmarks.

Objective: Clinical trials are essential for advancing pharmaceutical interventions, but they face a bottleneck in selecting eligible participants. Although leveraging electronic health records (EHR) for recruitment has gained popularity, the complex nature of unstructured medical texts presents challenges in efficiently identifying participants. Natural Language Processing (NLP) techniques have emerged as a solution with a recent focus on transformer models. In this study, we aimed to evaluate the performance of a prompt-based large language model for the cohort selection task from unstructured medical notes collected in the EHR. Methods: To process the medical records, we selected the most related sentences of the records to the eligibility criteria needed for the trial. The SNOMED CT concepts related to each eligibility criterion were collected. Medical records were also annotated with MedCAT based on the SNOMED CT ontology. Annotated sentences including concepts matched with the criteria-relevant terms were extracted. A prompt-based large language model (Generative Pre-trained Transformer (GPT) in this study) was then used with the extracted sentences as the training set. To assess its effectiveness, we evaluated the model's performance using the dataset from the 2018 n2c2 challenge, which aimed to classify medical records of 311 patients based on 13 eligibility criteria through NLP techniques. Results: Our proposed model showed the overall micro and macro F measures of 0.9061 and 0.8060 which were among the highest scores achieved by the experiments performed with this dataset. Conclusion: The application of a prompt-based large language model in this study to classify patients based on eligibility criteria received promising scores. Besides, we proposed a method of extractive summarization with the aid of SNOMED CT ontology that can be also applied to other medical texts.

High peak-to-average power ratio (PAPR) is one of the main factors limiting cell coverage for cellular systems, especially in the uplink direction. Discrete Fourier transform spread orthogonal frequency-domain multiplexing (DFT-s-OFDM) with spectrally-extended frequency-domain spectrum shaping (FDSS) is one of the efficient techniques deployed to lower the PAPR of the uplink waveforms. In this work, we propose a machine learning-based framework to determine the FDSS filter, optimizing a tradeoff between the symbol error rate (SER), the PAPR, and the spectral flatness requirements. Our end-to-end optimization framework considers multiple important design constraints, including the Nyquist zero-ISI (inter-symbol interference) condition. The numerical results show that learned FDSS filters lower the PAPR compared to conventional baselines, with minimal SER degradation. Tuning the parameters of the optimization also helps us understand the fundamental limitations and characteristics of the FDSS filters for PAPR reduction.

Face recognition technology has advanced significantly in recent years due largely to the availability of large and increasingly complex training datasets for use in deep learning models. These datasets, however, typically comprise images scraped from news sites or social media platforms and, therefore, have limited utility in more advanced security, forensics, and military applications. These applications require lower resolution, longer ranges, and elevated viewpoints. To meet these critical needs, we collected and curated the first and second subsets of a large multi-modal biometric dataset designed for use in the research and development (R&D) of biometric recognition technologies under extremely challenging conditions. Thus far, the dataset includes more than 350,000 still images and over 1,300 hours of video footage of approximately 1,000 subjects. To collect this data, we used Nikon DSLR cameras, a variety of commercial surveillance cameras, specialized long-rage R&D cameras, and Group 1 and Group 2 UAV platforms. The goal is to support the development of algorithms capable of accurately recognizing people at ranges up to 1,000 m and from high angles of elevation. These advances will include improvements to the state of the art in face recognition and will support new research in the area of whole-body recognition using methods based on gait and anthropometry. This paper describes methods used to collect and curate the dataset, and the dataset's characteristics at the current stage.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

The development of unmanned aerial vehicles (UAVs) has been gaining momentum in recent years owing to technological advances and a significant reduction in their cost. UAV technology can be used in a wide range of domains, including communication, agriculture, security, and transportation. It may be useful to group the UAVs into clusters/flocks in certain domains, and various challenges associated with UAV usage can be alleviated by clustering. Several computational challenges arise in UAV flock management, which can be solved by using machine learning (ML) methods. In this survey, we describe the basic terms relating to UAVS and modern ML methods, and we provide an overview of related tutorials and surveys. We subsequently consider the different challenges that appear in UAV flocks. For each issue, we survey several machine learning-based methods that have been suggested in the literature to handle the associated challenges. Thereafter, we describe various open issues in which ML can be applied to solve the different challenges of flocks, and we suggest means of using ML methods for this purpose. This comprehensive review may be useful for both researchers and developers in providing a wide view of various aspects of state-of-the-art ML technologies that are applicable to flock management.

北京阿比特科技有限公司