亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we investigate the security implications of virtualized and software-based Open Radio Access Network (RAN) systems, specifically focusing on the architecture proposed by the O-RAN ALLIANCE and O-Cloud deployments based on the O-RAN Software Community (OSC) stack and infrastructure. Our key findings are based on a thorough security assessment and static scanning of the OSC Near Real-Time RAN Intelligent Controller (RIC) cluster. We highlight the presence of potential vulnerabilities and misconfigurations in the Kubernetes infrastructure supporting the RIC, also due to the usage of outdated versions of software packages, and provide an estimation of their criticality using various deployment auditing frameworks (e.g., MITRE ATT&CK and the NSA CISA). In addition, we propose methodologies to minimize these issues and harden the Open RAN virtualization infrastructure. These encompass the integration of security evaluation methods into the deployment process, implementing deployment hardening measures, and employing policy-based control for RAN components. We emphasize the need to address the problems found in order to improve the overall security of virtualized Open RAN systems.

相關內容

 Kubernetes 是一個自動化部署,擴展,以及容器化管理應用程序的開源系統。

We present WonderWorld, a novel framework for interactive 3D scene extrapolation that enables users to explore and shape virtual environments based on a single input image and user-specified text. While significant improvements have been made to the visual quality of scene generation, existing methods are run offline, taking tens of minutes to hours to generate a scene. By leveraging Fast Gaussian Surfels and a guided diffusion-based depth estimation method, WonderWorld generates geometrically consistent extrapolation while significantly reducing computational time. Our framework generates connected and diverse 3D scenes in less than 10 seconds on a single A6000 GPU, enabling real-time user interaction and exploration. We demonstrate the potential of WonderWorld for applications in virtual reality, gaming, and creative design, where users can quickly generate and navigate immersive, potentially infinite virtual worlds from a single image. Our approach represents a significant advancement in interactive 3D scene generation, opening up new possibilities for user-driven content creation and exploration in virtual environments. We will release full code and software for reproducibility. Project website: //WonderWorld-2024.github.io/

This paper systematizes knowledge about secure software supply chain patterns. It identifies four stages of a software supply chain attack and proposes three security properties crucial for a secured supply chain: transparency, validity, and separation. The paper describes current security approaches and maps them to the proposed security properties, including research ideas and case studies of supply chains in practice. It discusses the strengths and weaknesses of current approaches relative to known attacks and details the various security frameworks put out to ensure the security of the software supply chain. Finally, the paper highlights potential gaps in actor and operation-centered supply chain security techniques

This work presents Adaptive Local-then-Global Merging (ALGM), a token reduction method for semantic segmentation networks that use plain Vision Transformers. ALGM merges tokens in two stages: (1) In the first network layer, it merges similar tokens within a small local window and (2) halfway through the network, it merges similar tokens across the entire image. This is motivated by an analysis in which we found that, in those situations, tokens with a high cosine similarity can likely be merged without a drop in segmentation quality. With extensive experiments across multiple datasets and network configurations, we show that ALGM not only significantly improves the throughput by up to 100%, but can also enhance the mean IoU by up to +1.1, thereby achieving a better trade-off between segmentation quality and efficiency than existing methods. Moreover, our approach is adaptive during inference, meaning that the same model can be used for optimal efficiency or accuracy, depending on the application. Code is available at //tue-mps.github.io/ALGM.

With the increasing trend of Machine Learning (ML) enabled software applications, the paradigm of ML Operations (MLOps) has gained tremendous attention of researchers and practitioners. MLOps encompasses the practices and technologies for streamlining the resources and monitoring needs of operationalizing ML models. Software development practitioners need access to the detailed and easily understandable knowledge of MLOps workflows, practices, challenges and solutions to effectively and efficiently support the adoption of MLOps. Whilst the academic and industry literature on the MLOps has been growing rapidly, there have been relatively a few attempts at systematically synthesizing and analyzing the vast amount of existing literature of MLOps for improving ease of access and understanding. We conducted a Multivocal Literature Review (MLR) of 150 relevant academic studies and 48 gray literature to provide a comprehensive body of knowledge on MLOps. Through this MLR, we identified the emerging MLOps practices, adoption challenges and solutions related to various areas, including development and operation of complex pipelines, managing production at scale, managing artifacts, and ensuring quality, security, governance, and ethical aspects. We also report the socio-technical aspect of MLOps relating to diverse roles involved and collaboration practices across them through the MLOps lifecycle. We assert that this MLR provides valuable insights to researchers and practitioners seeking to navigate the rapidly evolving landscape of MLOps. We also identify the open issues that need to be addressed in order to advance the current state-of-the-art of MLOps.

This paper presents Coralai, a framework for exploring diverse ecosystems of Neural Cellular Automata (NCA). Organisms in Coralai utilize modular, GPU-accelerated Taichi kernels to interact, enact environmental changes, and evolve through local survival, merging, and mutation operations implemented with HyperNEAT and PyTorch. We provide an exploratory experiment implementing physics inspired by slime mold behavior showcasing the emergence of competition between sessile and mobile organisms, cycles of resource depletion and recovery, and symbiosis between diverse organisms. We conclude by outlining future work to discover simulation parameters through measures of multi-scale complexity and diversity. Code for Coralai is available at //github.com/aidanbx/coralai , video demos are available at //www.youtube.com/watch?v=NL8IZQY02-8 .

The Pretrained Foundation Models (PFMs) are regarded as the foundation for various downstream tasks with different data modalities. A pretrained foundation model, such as BERT, GPT-3, MAE, DALLE-E, and ChatGPT, is trained on large-scale data which provides a reasonable parameter initialization for a wide range of downstream applications. The idea of pretraining behind PFMs plays an important role in the application of large models. Different from previous methods that apply convolution and recurrent modules for feature extractions, the generative pre-training (GPT) method applies Transformer as the feature extractor and is trained on large datasets with an autoregressive paradigm. Similarly, the BERT apples transformers to train on large datasets as a contextual language model. Recently, the ChatGPT shows promising success on large language models, which applies an autoregressive language model with zero shot or few show prompting. With the extraordinary success of PFMs, AI has made waves in a variety of fields over the past few years. Considerable methods, datasets, and evaluation metrics have been proposed in the literature, the need is raising for an updated survey. This study provides a comprehensive review of recent research advancements, current and future challenges, and opportunities for PFMs in text, image, graph, as well as other data modalities. We first review the basic components and existing pretraining in natural language processing, computer vision, and graph learning. We then discuss other advanced PFMs for other data modalities and unified PFMs considering the data quality and quantity. Besides, we discuss relevant research about the fundamentals of the PFM, including model efficiency and compression, security, and privacy. Finally, we lay out key implications, future research directions, challenges, and open problems.

As an effective strategy, data augmentation (DA) alleviates data scarcity scenarios where deep learning techniques may fail. It is widely applied in computer vision then introduced to natural language processing and achieves improvements in many tasks. One of the main focuses of the DA methods is to improve the diversity of training data, thereby helping the model to better generalize to unseen testing data. In this survey, we frame DA methods into three categories based on the diversity of augmented data, including paraphrasing, noising, and sampling. Our paper sets out to analyze DA methods in detail according to the above categories. Further, we also introduce their applications in NLP tasks as well as the challenges.

Seeking the equivalent entities among multi-source Knowledge Graphs (KGs) is the pivotal step to KGs integration, also known as \emph{entity alignment} (EA). However, most existing EA methods are inefficient and poor in scalability. A recent summary points out that some of them even require several days to deal with a dataset containing 200,000 nodes (DWY100K). We believe over-complex graph encoder and inefficient negative sampling strategy are the two main reasons. In this paper, we propose a novel KG encoder -- Dual Attention Matching Network (Dual-AMN), which not only models both intra-graph and cross-graph information smartly, but also greatly reduces computational complexity. Furthermore, we propose the Normalized Hard Sample Mining Loss to smoothly select hard negative samples with reduced loss shift. The experimental results on widely used public datasets indicate that our method achieves both high accuracy and high efficiency. On DWY100K, the whole running process of our method could be finished in 1,100 seconds, at least 10* faster than previous work. The performances of our method also outperform previous works across all datasets, where Hits@1 and MRR have been improved from 6% to 13%.

This paper aims at revisiting Graph Convolutional Neural Networks by bridging the gap between spectral and spatial design of graph convolutions. We theoretically demonstrate some equivalence of the graph convolution process regardless it is designed in the spatial or the spectral domain. The obtained general framework allows to lead a spectral analysis of the most popular ConvGNNs, explaining their performance and showing their limits. Moreover, the proposed framework is used to design new convolutions in spectral domain with a custom frequency profile while applying them in the spatial domain. We also propose a generalization of the depthwise separable convolution framework for graph convolutional networks, what allows to decrease the total number of trainable parameters by keeping the capacity of the model. To the best of our knowledge, such a framework has never been used in the GNNs literature. Our proposals are evaluated on both transductive and inductive graph learning problems. Obtained results show the relevance of the proposed method and provide one of the first experimental evidence of transferability of spectral filter coefficients from one graph to another. Our source codes are publicly available at: //github.com/balcilar/Spectral-Designed-Graph-Convolutions

Machine learning techniques have deeply rooted in our everyday life. However, since it is knowledge- and labor-intensive to pursue good learning performance, human experts are heavily involved in every aspect of machine learning. In order to make machine learning techniques easier to apply and reduce the demand for experienced human experts, automated machine learning (AutoML) has emerged as a hot topic with both industrial and academic interest. In this paper, we provide an up to date survey on AutoML. First, we introduce and define the AutoML problem, with inspiration from both realms of automation and machine learning. Then, we propose a general AutoML framework that not only covers most existing approaches to date but also can guide the design for new methods. Subsequently, we categorize and review the existing works from two aspects, i.e., the problem setup and the employed techniques. Finally, we provide a detailed analysis of AutoML approaches and explain the reasons underneath their successful applications. We hope this survey can serve as not only an insightful guideline for AutoML beginners but also an inspiration for future research.

北京阿比特科技有限公司