亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Healthcare industries frequently handle sensitive and proprietary data, and due to strict privacy regulations, they are often reluctant to share data directly. In today's context, Federated Learning (FL) stands out as a crucial remedy, facilitating the rapid advancement of distributed machine learning while effectively managing critical concerns regarding data privacy and governance. The fusion of federated learning and quantum computing represents a groundbreaking interdisciplinary approach with immense potential to revolutionize various industries, from healthcare to finance. In this work, we proposed a federated learning framework based on quantum tensor networks, which leverages the principles of many-body quantum physics. Currently, there are no known classical tensor networks implemented in federated settings. Furthermore, we investigated the effectiveness and feasibility of the proposed framework by conducting a differential privacy analysis to ensure the security of sensitive data across healthcare institutions. Experiments on popular medical image datasets show that the federated quantum tensor network model achieved a mean receiver-operator characteristic area under the curve (ROC-AUC) between 0.91-0.98. Experimental results demonstrate that the quantum federated global model, consisting of highly entangled tensor network structures, showed better generalization and robustness and achieved higher testing accuracy, surpassing the performance of locally trained clients under unbalanced data distributions among healthcare institutions.

相關內容

LLMs are increasingly being deployed for multilingual applications and have demonstrated impressive translation capabilities between several low and high resource languages. An aspect of translation that often gets overlooked is that of cultural adaptation, or modifying source culture references to suit the target culture. Cultural adaptation has applications across several creative industries and requires intimate knowledge of source and target cultures during translation. While specialized translation models still outperform LLMs on the machine translation task when viewed from the lens of correctness, they are not sensitive to cultural differences often requiring manual correction. LLMs on the other hand have a rich reservoir of cultural knowledge embedded within its parameters that can be potentially exploited for such applications. In this paper we define the task of cultural adaptation and create an evaluation framework to benchmark different models for this task. We evaluate the performance of modern LLMs for cultural adaptation and analyze their cross cultural knowledge while connecting related concepts across different cultures. We also analyze possible issues with automatic adaptation including cultural biases and stereotypes. We hope that this task will offer more insight into the cultural understanding of LLMs and their creativity in cross-cultural scenarios.

Despite achieving promising fairness-error trade-offs, in-processing mitigation techniques for group fairness cannot be employed in numerous practical applications with limited computation resources or no access to the training pipeline of the prediction model. In these situations, post-processing is a viable alternative. However, current methods are tailored to specific problem settings and fairness definitions and hence, are not as broadly applicable as in-processing. In this work, we propose a framework that turns any regularized in-processing method into a post-processing approach. This procedure prescribes a way to obtain post-processing techniques for a much broader range of problem settings than the prior post-processing literature. We show theoretically and through extensive experiments that our framework preserves the good fairness-error trade-offs achieved with in-processing and can improve over the effectiveness of prior post-processing methods. Finally, we demonstrate several advantages of a modular mitigation strategy that disentangles the training of the prediction model from the fairness mitigation, including better performance on tasks with partial group labels.

Recommender systems have been widely used in e-commerce, and re-ranking models are playing an increasingly significant role in the domain, which leverages the inter-item influence and determines the final recommendation lists. Online learning methods keep updating a deployed model with the latest available samples to capture the shifting of the underlying data distribution in e-commerce. However, they depend on the availability of real user feedback, which may be delayed by hours or even days, such as item purchases, leading to a lag in model enhancement. In this paper, we propose a novel extension of online learning methods for re-ranking modeling, which we term LAST, an acronym for Learning At Serving Time. It circumvents the requirement of user feedback by using a surrogate model to provide the instructional signal needed to steer model improvement. Upon receiving an online request, LAST finds and applies a model modification on the fly before generating a recommendation result for the request. The modification is request-specific and transient. It means the modification is tailored to and only to the current request to capture the specific context of the request. After a request, the modification is discarded, which helps to prevent error propagation and stabilizes the online learning procedure since the predictions of the surrogate model may be inaccurate. Most importantly, as a complement to feedback-based online learning methods, LAST can be seamlessly integrated into existing online learning systems to create a more adaptive and responsive recommendation experience. Comprehensive experiments, both offline and online, affirm that LAST outperforms state-of-the-art re-ranking models.

Speech encompasses a wealth of information, including but not limited to content, paralinguistic, and environmental information. This comprehensive nature of speech significantly impacts communication and is crucial for human-computer interaction. Chat-Oriented Large Language Models (LLMs), known for their general-purpose assistance capabilities, have evolved to handle multi-modal inputs, including speech. Although these models can be adept at recognizing and analyzing speech, they often fall short of generating appropriate responses. We argue that this is due to the lack of principles on task definition and model development, which requires open-source datasets and metrics suitable for model evaluation. To bridge the gap, we present SD-Eval, a benchmark dataset aimed at multidimensional evaluation of spoken dialogue understanding and generation. SD-Eval focuses on paralinguistic and environmental information and includes 7,303 utterances, amounting to 8.76 hours of speech data. The data is aggregated from eight public datasets, representing four perspectives: emotion, accent, age, and background sound. To assess the SD-Eval benchmark dataset, we implement three different models and construct a training set following a similar process as SD-Eval. The training set contains 1,052.72 hours of speech data and 724.4k utterances. We also conduct a comprehensive evaluation using objective evaluation methods (e.g. BLEU and ROUGE), subjective evaluations and LLM-based metrics for the generated responses. Models conditioned with paralinguistic and environmental information outperform their counterparts in both objective and subjective measures. Moreover, experiments demonstrate LLM-based metrics show a higher correlation with human evaluation compared to traditional metrics. We open-source SD-Eval at //github.com/amphionspace/SD-Eval.

Intent inferral on a hand orthosis for stroke patients is challenging due to the difficulty of data collection from impaired subjects. Additionally, EMG signals exhibit significant variations across different conditions, sessions, and subjects, making it hard for classifiers to generalize. Traditional approaches require a large labeled dataset from the new condition, session, or subject to train intent classifiers; however, this data collection process is burdensome and time-consuming. In this paper, we propose ChatEMG, an autoregressive generative model that can generate synthetic EMG signals conditioned on prompts (i.e., a given sequence of EMG signals). ChatEMG enables us to collect only a small dataset from the new condition, session, or subject and expand it with synthetic samples conditioned on prompts from this new context. ChatEMG leverages a vast repository of previous data via generative training while still remaining context-specific via prompting. Our experiments show that these synthetic samples are classifier-agnostic and can improve intent inferral accuracy for different types of classifiers. We demonstrate that our complete approach can be integrated into a single patient session, including the use of the classifier for functional orthosis-assisted tasks. To the best of our knowledge, this is the first time an intent classifier trained partially on synthetic data has been deployed for functional control of an orthosis by a stroke survivor. Videos and additional information can be found at //jxu.ai/chatemg.

We consider the dataset valuation problem, that is, the problem of quantifying the incremental gain, to some relevant pre-defined utility of a machine learning task, of aggregating an individual dataset to others. The Shapley value is a natural tool to perform dataset valuation due to its formal axiomatic justification, which can be combined with Monte Carlo integration to overcome the computational tractability challenges. Such generic approximation methods, however, remain expensive in some cases. In this paper, we exploit the knowledge about the structure of the dataset valuation problem to devise more efficient Shapley value estimators. We propose a novel approximation, referred to as discrete uniform Shapley, which is expressed as an expectation under a discrete uniform distribution with support of reasonable size. We justify the relevancy of the proposed framework via asymptotic and non-asymptotic theoretical guarantees and illustrate its benefits via an extensive set of numerical experiments.

Modern approaches to autonomous driving rely heavily on learned components trained with large amounts of human driving data via imitation learning. However, these methods require large amounts of expensive data collection and even then face challenges with safely handling long-tail scenarios and compounding errors over time. At the same time, pure Reinforcement Learning (RL) methods can fail to learn performant policies in sparse, constrained, and challenging-to-define reward settings like driving. Both of these challenges make deploying purely cloned policies in safety critical applications like autonomous vehicles challenging. In this paper we propose Combining IMitation and Reinforcement Learning (CIMRL) approach - a framework that enables training driving policies in simulation through leveraging imitative motion priors and safety constraints. CIMRL does not require extensive reward specification and improves on the closed loop behavior of pure cloning methods. By combining RL and imitation, we demonstrate that our method achieves state-of-the-art results in closed loop simulation driving benchmarks.

Nowadays, the fields of code and natural language processing are evolving rapidly. In particular, models become better at processing long context windows - supported context sizes have increased by orders of magnitude over the last few years. However, there is a shortage of benchmarks for code processing that go beyond a single file of context, while the most popular ones are limited to a single method. With this work, we aim to close this gap by introducing Long Code Arena, a suite of six benchmarks for code processing tasks that require project-wide context. These tasks cover different aspects of code processing: library-based code generation, CI builds repair, project-level code completion, commit message generation, bug localization, and module summarization. For each task, we provide a manually verified dataset for testing, an evaluation suite, and open-source baseline solutions based on popular LLMs to showcase the usage of the dataset and to simplify adoption by other researchers. We publish the benchmark page on HuggingFace Spaces with the leaderboard, links to HuggingFace Hub for all the datasets, and link to the GitHub repository with baselines: //huggingface.co/spaces/JetBrains-Research/long-code-arena.

We investigate the fairness issue in classification, where automated decisions are made for individuals from different protected groups. In high-consequence scenarios, decision errors can disproportionately affect certain protected groups, leading to unfair outcomes. To address this issue, we propose a fairness-adjusted selective inference (FASI) framework and develop data-driven algorithms that achieve statistical parity by controlling the false selection rate (FSR) among protected groups. Our FASI algorithm operates by converting the outputs of black-box classifiers into R-values, which are both intuitive and computationally efficient. These R-values serve as the basis for selection rules that are provably valid for FSR control in finite samples for protected groups, effectively mitigating the unfairness in group-wise error rates. We demonstrate the numerical performance of our approach using both simulated and real data.

Generative commonsense reasoning which aims to empower machines to generate sentences with the capacity of reasoning over a set of concepts is a critical bottleneck for text generation. Even the state-of-the-art pre-trained language generation models struggle at this task and often produce implausible and anomalous sentences. One reason is that they rarely consider incorporating the knowledge graph which can provide rich relational information among the commonsense concepts. To promote the ability of commonsense reasoning for text generation, we propose a novel knowledge graph augmented pre-trained language generation model KG-BART, which encompasses the complex relations of concepts through the knowledge graph and produces more logical and natural sentences as output. Moreover, KG-BART can leverage the graph attention to aggregate the rich concept semantics that enhances the model generalization on unseen concept sets. Experiments on benchmark CommonGen dataset verify the effectiveness of our proposed approach by comparing with several strong pre-trained language generation models, particularly KG-BART outperforms BART by 5.80, 4.60, in terms of BLEU-3, 4. Moreover, we also show that the generated context by our model can work as background scenarios to benefit downstream commonsense QA tasks.

北京阿比特科技有限公司