亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Operator Precedence Languages (OPL) have been recently identified as a suitable formalism for model checking recursive procedural programs, thanks to their ability of modeling the program stack. OPL requirements can be expressed in the Precedence Oriented Temporal Logic (POTL), which features modalities to reason on the natural matching between function calls and returns, exceptions, and other advanced programming constructs that previous approaches, such as Visibly Pushdown Languages, cannot model effectively. Existing approaches for model checking of POTL have been designed following the explicit-state, automata-based approach, a feature that severely limits their scalability. In this paper, we give the first symbolic, SMT-based approach for model checking POTL properties. While previous approaches construct the automaton for both the POTL formula and the model of the program, we encode them into a (sequence of) SMT formulas. The search of a trace of the model witnessing a violation of the formula is then carried out by an SMT-solver, in a Bounded Model Checking fashion. We carried out an experimental evaluation, which shows the effectiveness of the proposed solution.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 自動問答 · 語言模型化 · 控制器 · 詞元分析器 ·
2024 年 7 月 1 日

Ensuring the verifiability of model answers is a fundamental challenge for retrieval-augmented generation (RAG) in the question answering (QA) domain. Recently, self-citation prompting was proposed to make large language models (LLMs) generate citations to supporting documents along with their answers. However, self-citing LLMs often struggle to match the required format, refer to non-existent sources, and fail to faithfully reflect LLMs' context usage throughout the generation. In this work, we present MIRAGE --Model Internals-based RAG Explanations -- a plug-and-play approach using model internals for faithful answer attribution in RAG applications. MIRAGE detects context-sensitive answer tokens and pairs them with retrieved documents contributing to their prediction via saliency methods. We evaluate our proposed approach on a multilingual extractive QA dataset, finding high agreement with human answer attribution. On open-ended QA, MIRAGE achieves citation quality and efficiency comparable to self-citation while also allowing for a finer-grained control of attribution parameters. Our qualitative evaluation highlights the faithfulness of MIRAGE's attributions and underscores the promising application of model internals for RAG answer attribution.

In domains with interdependent data, such as graphs, quantifying the epistemic uncertainty of a Graph Neural Network (GNN) is challenging as uncertainty can arise at different structural scales. Existing techniques neglect this issue or only distinguish between structure-aware and structure-agnostic uncertainty without combining them into a single measure. We propose GEBM, an energy-based model (EBM) that provides high-quality uncertainty estimates by aggregating energy at different structural levels that naturally arise from graph diffusion. In contrast to logit-based EBMs, we provably induce an integrable density in the data space by regularizing the energy function. We introduce an evidential interpretation of our EBM that significantly improves the predictive robustness of the GNN. Our framework is a simple and effective post hoc method applicable to any pre-trained GNN that is sensitive to various distribution shifts. It consistently achieves the best separation of in-distribution and out-of-distribution data on 6 out of 7 anomaly types while having the best average rank over shifts on \emph{all} datasets.

Temporal relation extraction (TRE) aims to grasp the evolution of events or actions, and thus shape the workflow of associated tasks, so it holds promise in helping understand task requests initiated by requesters in crowdsourcing systems. However, existing methods still struggle with limited and unevenly distributed annotated data. Therefore, inspired by the abundant global knowledge stored within pre-trained language models (PLMs), we propose a multi-task prompt learning framework for TRE (TemPrompt), incorporating prompt tuning and contrastive learning to tackle these issues. To elicit more effective prompts for PLMs, we introduce a task-oriented prompt construction approach that thoroughly takes the myriad factors of TRE into consideration for automatic prompt generation. In addition, we present temporal event reasoning as a supplement to bolster the model's focus on events and temporal cues. The experimental results demonstrate that TemPrompt outperforms all compared baselines across the majority of metrics under both standard and few-shot settings. A case study is provided to validate its effectiveness in crowdsourcing scenarios.

The demand for processing vast volumes of data has surged dramatically due to the advancement of machine learning technology. Large-scale data processing necessitates substantial computational resources, prompting individuals and enterprises to turn to cloud services. Accompanying this trend is a growing concern regarding data leakage and misuse. Homomorphic encryption (HE) is one solution for safeguarding data privacy, enabling encrypted data to be processed securely in the cloud. However, we observe that encryption and decryption routines of some HE schemes require considerable computational resources, presenting non-trivial work for clients. In this paper, we propose an outsourced decryption protocol for RLWE-based HE schemes, which splits the original decryption into two routines, with the computationally intensive part executed remotely by the cloud. Its security relies on an invariant of the NTRU-search problem with a newly designed secret distribution. Cryptographic analyses are conducted to configure protocol parameters across varying security levels. Our experiments demonstrate that the proposed protocol achieves up to a $67\%$ acceleration in the client's local decryption, accompanied by a $50\%$ reduction in space usage.

Large Language Models (LLMs) have made significant progress in code generation, providing developers with unprecedented automated programming support. However, LLMs often generate code that is syntactically correct and even semantically plausible but may not execute as expected or meet specified requirements. This phenomenon of hallucinations in the code domain has not been systematically explored. To enhance the community's understanding and research on this issue, we introduce the concept of code hallucinations and propose a classification method for code hallucination based on execution verification. We classify code hallucinations into four main types: mapping, naming, resource, and logic hallucinations, with each category further divided into different subcategories to understand and address the unique challenges faced by LLMs in code generation with finer granularity. Additionally, we develop a dynamic detection algorithm named CodeHalu to quantify code hallucinations and establish the CodeHaluEval benchmark, which includes 8,883 samples from 699 tasks to systematically and quantitatively evaluate code hallucinations. By evaluating 17 popular LLMs on this benchmark, we reveal significant differences in their accuracy and reliability in code generation and provide detailed insights for further improving the code generation capabilities of LLMs. The CodeHalu benchmark and code are publicly available at //github.com/yuchen814/CodeHalu.

Defensive deception is a promising approach for cyberdefense. Although defensive deception is increasingly popular in the research community, there has not been a systematic investigation of its key components, the underlying principles, and its tradeoffs in various problem settings. This survey paper focuses on defensive deception research centered on game theory and machine learning, since these are prominent families of artificial intelligence approaches that are widely employed in defensive deception. This paper brings forth insights, lessons, and limitations from prior work. It closes with an outline of some research directions to tackle major gaps in current defensive deception research.

Graph Neural Networks (GNN) has demonstrated the superior performance in many challenging applications, including the few-shot learning tasks. Despite its powerful capacity to learn and generalize from few samples, GNN usually suffers from severe over-fitting and over-smoothing as the model becomes deep, which limit the model scalability. In this work, we propose a novel Attentive GNN to tackle these challenges, by incorporating a triple-attention mechanism, \ie node self-attention, neighborhood attention, and layer memory attention. We explain why the proposed attentive modules can improve GNN for few-shot learning with theoretical analysis and illustrations. Extensive experiments show that the proposed Attentive GNN outperforms the state-of-the-art GNN-based methods for few-shot learning over the mini-ImageNet and Tiered-ImageNet datasets, with both inductive and transductive settings.

The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.

Recently, ensemble has been applied to deep metric learning to yield state-of-the-art results. Deep metric learning aims to learn deep neural networks for feature embeddings, distances of which satisfy given constraint. In deep metric learning, ensemble takes average of distances learned by multiple learners. As one important aspect of ensemble, the learners should be diverse in their feature embeddings. To this end, we propose an attention-based ensemble, which uses multiple attention masks, so that each learner can attend to different parts of the object. We also propose a divergence loss, which encourages diversity among the learners. The proposed method is applied to the standard benchmarks of deep metric learning and experimental results show that it outperforms the state-of-the-art methods by a significant margin on image retrieval tasks.

Attention mechanism has been used as an ancillary means to help RNN or CNN. However, the Transformer (Vaswani et al., 2017) recently recorded the state-of-the-art performance in machine translation with a dramatic reduction in training time by solely using attention. Motivated by the Transformer, Directional Self Attention Network (Shen et al., 2017), a fully attention-based sentence encoder, was proposed. It showed good performance with various data by using forward and backward directional information in a sentence. But in their study, not considered at all was the distance between words, an important feature when learning the local dependency to help understand the context of input text. We propose Distance-based Self-Attention Network, which considers the word distance by using a simple distance mask in order to model the local dependency without losing the ability of modeling global dependency which attention has inherent. Our model shows good performance with NLI data, and it records the new state-of-the-art result with SNLI data. Additionally, we show that our model has a strength in long sentences or documents.

北京阿比特科技有限公司