亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper focuses on addressing the issue of image demoireing. Unlike the large volume of existing studies that rely on learning from paired real data, we attempt to learn a demoireing model from unpaired real data, i.e., moire images associated with irrelevant clean images. The proposed method, referred to as Unpaired Demoireing (UnDeM), synthesizes pseudo moire images from unpaired datasets, generating pairs with clean images for training demoireing models. To achieve this, we divide real moire images into patches and group them in compliance with their moire complexity. We introduce a novel moire generation framework to synthesize moire images with diverse moire features, resembling real moire patches, and details akin to real moire-free images. Additionally, we introduce an adaptive denoise method to eliminate the low-quality pseudo moire images that adversely impact the learning of demoireing models. We conduct extensive experiments on the commonly-used FHDMi and UHDM datasets. Results manifest that our UnDeM performs better than existing methods when using existing demoireing models such as MBCNN and ESDNet-L. Code: //github.com/zysxmu/UnDeM

相關內容

Conventional causal discovery methods rely on centralized data, which is inconsistent with the decentralized nature of data in many real-world situations. This discrepancy has motivated the development of federated causal discovery (FCD) approaches. However, existing FCD methods may be limited by their potentially restrictive assumptions of identifiable functional causal models or homogeneous data distributions, narrowing their applicability in diverse scenarios. In this paper, we propose a novel FCD method attempting to accommodate arbitrary causal models and heterogeneous data. We first utilize a surrogate variable corresponding to the client index to account for the data heterogeneity across different clients. We then develop a federated conditional independence test (FCIT) for causal skeleton discovery and establish a federated independent change principle (FICP) to determine causal directions. These approaches involve constructing summary statistics as a proxy of the raw data to protect data privacy. Owing to the nonparametric properties, FCIT and FICP make no assumption about particular functional forms, thereby facilitating the handling of arbitrary causal models. We conduct extensive experiments on synthetic and real datasets to show the efficacy of our method. The code is available at \url{//github.com/lokali/FedCDH.git}.

Despite significant strides in multimodal tasks, Multimodal Large Language Models (MLLMs) are plagued by the critical issue of hallucination. The reliable detection of such hallucinations in MLLMs has, therefore, become a vital aspect of model evaluation and the safeguarding of practical application deployment. Prior research in this domain has been constrained by a narrow focus on singular tasks, an inadequate range of hallucination categories addressed, and a lack of detailed granularity. In response to these challenges, our work expands the investigative horizons of hallucination detection. We present a novel meta-evaluation benchmark, MHaluBench, meticulously crafted to facilitate the evaluation of advancements in hallucination detection methods. Additionally, we unveil a novel unified multimodal hallucination detection framework, UNIHD, which leverages a suite of auxiliary tools to validate the occurrence of hallucinations robustly. We demonstrate the effectiveness of UNIHD through meticulous evaluation and comprehensive analysis. We also provide strategic insights on the application of specific tools for addressing various categories of hallucinations.

This paper is concerned with the problem of recovering third-order tensor data from limited samples. A recently proposed tensor decomposition (BMD) method has been shown to efficiently compress third-order spatiotemporal data. Using the BMD, we formulate a slicewise nuclear norm penalized algorithm to recover a third-order tensor from limited observed samples. We develop an efficient alternating direction method of multipliers (ADMM) scheme to solve the resulting minimization problem. Experimental results on real data show our method to give reconstruction comparable to those of HaLRTC (Liu et al., IEEE Trans Ptrn Anal Mchn Int, 2012), a well-known tensor completion method, in about the same number of iterations. However, our method has the advantage of smaller subproblems and higher parallelizability per iteration.

We introduce a novel approach for the reconstruction of tubular shapes from skeletal representations. Our method processes all skeletal points as a whole, eliminating the need for splitting input structure into multiple segments. We represent the tubular shape as a truncated signed distance function (TSDF) in a voxel hashing manner, in which the signed distance between a voxel center and the object is computed through a simple geometric algorithm. Our method does not involve any surface sampling scheme or solving large matrix equations, and therefore is a faster and more elegant solution for tubular shape reconstruction compared to other approaches. Experiments demonstrate the efficiency and effectiveness of the proposed method. Code is avaliable at //github.com/wlsdzyzl/Dragon.

Learning causal structures from observational data is a fundamental problem facing important computational challenges when the number of variables is large. In the context of linear structural equation models (SEMs), this paper focuses on learning causal structures from the inverse covariance matrix. The proposed method, called ICID for Independence-preserving Decomposition from Inverse Covariance matrix, is based on continuous optimization of a matrix decomposition model that preserves the nonzero patterns of the inverse covariance matrix. Through theoretical and empirical evidences, we show that ICID efficiently identifies the sought directed acyclic graph (DAG) assuming the knowledge of noise variances. Moreover, ICID is shown empirically to be robust under bounded misspecification of noise variances in the case where the noise variances are non-equal. The proposed method enjoys a low complexity, as reflected by its time efficiency in the experiments, and also enables a novel regularization scheme that yields highly accurate solutions on the Simulated fMRI data (Smith et al., 2011) in comparison with state-of-the-art algorithms.

Interactive visual grounding in Human-Robot Interaction (HRI) is challenging yet practical due to the inevitable ambiguity in natural languages. It requires robots to disambiguate the user input by active information gathering. Previous approaches often rely on predefined templates to ask disambiguation questions, resulting in performance reduction in realistic interactive scenarios. In this paper, we propose TiO, an end-to-end system for interactive visual grounding in human-robot interaction. Benefiting from a unified formulation of visual dialogue and grounding, our method can be trained on a joint of extensive public data, and show superior generality to diversified and challenging open-world scenarios. In the experiments, we validate TiO on GuessWhat?! and InViG benchmarks, setting new state-of-the-art performance by a clear margin. Moreover, we conduct HRI experiments on the carefully selected 150 challenging scenes as well as real-robot platforms. Results show that our method demonstrates superior generality to diversified visual and language inputs with a high success rate. Codes and demos are available at //github.com/jxu124/TiO.

Previous STRIPS domain model acquisition approaches that learn from state traces start with the names and parameters of the actions to be learned. Therefore their only task is to deduce the preconditions and effects of the given actions. In this work, we explore learning in situations when the parameters of learned actions are not provided. We define two levels of trace quality based on which information is provided and present an algorithm for each. In one level (L1), the states in the traces are labeled with action names, so we can deduce the number and names of the actions, but we still need to work out the number and types of parameters. In the other level (L2), the states are additionally labeled with objects that constitute the parameters of the corresponding grounded actions. Here we still need to deduce the types of the parameters in the learned actions. We experimentally evaluate the proposed algorithms and compare them with the state-of-the-art learning tool FAMA on a large collection of IPC benchmarks. The evaluation shows that our new algorithms are faster, can handle larger inputs and provide better results in terms of learning action models more similar to reference models.

Recent advancements in visualizing deep neural networks provide insights into their structures and mesh extraction from Continuous Piecewise Affine (CPWA) functions. Meanwhile, developments in neural surface representation learning incorporate non-linear positional encoding, addressing issues like spectral bias; however, this poses challenges in applying mesh extraction techniques based on CPWA functions. Focusing on trilinear interpolating methods as positional encoding, we present theoretical insights and an analytical mesh extraction, showing the transformation of hypersurfaces to flat planes within the trilinear region under the eikonal constraint. Moreover, we introduce a method for approximating intersecting points among three hypersurfaces contributing to broader applications. We empirically validate correctness and parsimony through chamfer distance and efficiency, and angular distance, while examining the correlation between the eikonal loss and the planarity of the hypersurfaces.

The key challenge of image manipulation detection is how to learn generalizable features that are sensitive to manipulations in novel data, whilst specific to prevent false alarms on authentic images. Current research emphasizes the sensitivity, with the specificity overlooked. In this paper we address both aspects by multi-view feature learning and multi-scale supervision. By exploiting noise distribution and boundary artifact surrounding tampered regions, the former aims to learn semantic-agnostic and thus more generalizable features. The latter allows us to learn from authentic images which are nontrivial to be taken into account by current semantic segmentation network based methods. Our thoughts are realized by a new network which we term MVSS-Net. Extensive experiments on five benchmark sets justify the viability of MVSS-Net for both pixel-level and image-level manipulation detection.

Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.

北京阿比特科技有限公司