亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Trust evaluation assesses trust relationships between entities and facilitates decision-making. Machine Learning (ML) shows great potential for trust evaluation owing to its learning capabilities. In recent years, Graph Neural Networks (GNNs), as a new ML paradigm, have demonstrated superiority in dealing with graph data. This has motivated researchers to explore their use in trust evaluation, as trust relationships among entities can be modeled as a graph. However, current trust evaluation methods that employ GNNs fail to fully satisfy the dynamic nature of trust, overlook the adverse effects of trust-related attacks, and cannot provide convincing explanations on evaluation results. To address these problems, we propose TrustGuard, a GNN-based accurate trust evaluation model that supports trust dynamicity, is robust against typical attacks, and provides explanations through visualization. Specifically, TrustGuard is designed with a layered architecture that contains a snapshot input layer, a spatial aggregation layer, a temporal aggregation layer, and a prediction layer. Among them, the spatial aggregation layer adopts a defense mechanism to robustly aggregate local trust, and the temporal aggregation layer applies an attention mechanism for effective learning of temporal patterns. Extensive experiments on two real-world datasets show that TrustGuard outperforms state-of-the-art GNN-based trust evaluation models with respect to trust prediction across single-timeslot and multi-timeslot, even in the presence of attacks. In addition, TrustGuard can explain its evaluation results by visualizing both spatial and temporal views.

相關內容

Despite making significant progress in multi-modal tasks, current Multi-modal Large Language Models (MLLMs) encounter the significant challenge of hallucinations, which may lead to harmful consequences. Therefore, evaluating MLLMs' hallucinations is becoming increasingly important in model improvement and practical application deployment. Previous works are limited in high evaluation costs (e.g., relying on humans or advanced LLMs) and insufficient evaluation dimensions (e.g., types of tasks and hallucinations). In this paper, we propose an LLM-free multi-dimensional benchmark AMBER, which can be used to evaluate both generative task and discriminative task including existence, attribute and relation hallucination. Based on AMBER, we design a low-cost and efficient evaluation pipeline. Additionally, we conduct a comprehensive evaluation and detailed analysis of mainstream MLLMs including GPT-4V(ision), and also give guideline suggestions for mitigating hallucinations. The data and code of AMBER are available at //github.com/junyangwang0410/AMBER.

Recent progress with LLM-based agents has shown promising results across various tasks. However, their use in answering questions from knowledge bases remains largely unexplored. Implementing a KBQA system using traditional methods is challenging due to the shortage of task-specific training data and the complexity of creating task-focused model structures. In this paper, we present Triad, a unified framework that utilizes an LLM-based agent with three roles for KBQA tasks. The agent is assigned three roles to tackle different KBQA subtasks: agent as a generalist for mastering various subtasks, as a decision maker for the selection of candidates, and as an advisor for answering questions with knowledge. Our KBQA framework is executed in four phases, involving the collaboration of the agent's multiple roles. We evaluated the performance of our framework using three benchmark datasets, and the results show that our framework outperforms state-of-the-art systems on the LC-QuAD and YAGO-QA benchmarks, yielding F1 scores of 11.8% and 20.7%, respectively.

Critique ability are crucial in the scalable oversight and self-improvement of Large Language Models (LLMs). While many recent studies explore the critique ability of LLMs to judge and refine flaws in generations, how to comprehensively and reliably measure the critique abilities of LLMs is under-explored. This paper introduces \shortname, a novel benchmark designed to comprehensively and reliably evaluate four key critique ability dimensions of LLMs: feedback, comparison, refinement and meta-feedback. CriticBench encompasses nine diverse tasks, each assessing the LLMs' ability to critique responses at varying levels of quality granularity. Our extensive evaluations of open-source and closed-source LLMs reveal intriguing relationships between the critique ability and tasks, response qualities, and model scales. Datasets, resources and evaluation toolkit for CriticBench will be publicly released at \url{//github.com/open-compass/CriticBench}.

Skeleton-based action segmentation requires recognizing composable actions in untrimmed videos. Current approaches decouple this problem by first extracting local visual features from skeleton sequences and then processing them by a temporal model to classify frame-wise actions. However, their performances remain limited as the visual features cannot sufficiently express composable actions. In this context, we propose Latent Action Composition (LAC), a novel self-supervised framework aiming at learning from synthesized composable motions for skeleton-based action segmentation. LAC is composed of a novel generation module towards synthesizing new sequences. Specifically, we design a linear latent space in the generator to represent primitive motion. New composed motions can be synthesized by simply performing arithmetic operations on latent representations of multiple input skeleton sequences. LAC leverages such synthesized sequences, which have large diversity and complexity, for learning visual representations of skeletons in both sequence and frame spaces via contrastive learning. The resulting visual encoder has a high expressive power and can be effectively transferred onto action segmentation tasks by end-to-end fine-tuning without the need for additional temporal models. We conduct a study focusing on transfer-learning and we show that representations learned from pre-trained LAC outperform the state-of-the-art by a large margin on TSU, Charades, PKU-MMD datasets.

AI based Face Recognition Systems (FRSs) are now widely distributed and deployed as MLaaS solutions all over the world, moreso since the COVID-19 pandemic for tasks ranging from validating individuals' faces while buying SIM cards to surveillance of citizens. Extensive biases have been reported against marginalized groups in these systems and have led to highly discriminatory outcomes. The post-pandemic world has normalized wearing face masks but FRSs have not kept up with the changing times. As a result, these systems are susceptible to mask based face occlusion. In this study, we audit four commercial and nine open-source FRSs for the task of face re-identification between different varieties of masked and unmasked images across five benchmark datasets (total 14,722 images). These simulate a realistic validation/surveillance task as deployed in all major countries around the world. Three of the commercial and five of the open-source FRSs are highly inaccurate; they further perpetuate biases against non-White individuals, with the lowest accuracy being 0%. A survey for the same task with 85 human participants also results in a low accuracy of 40%. Thus a human-in-the-loop moderation in the pipeline does not alleviate the concerns, as has been frequently hypothesized in literature. Our large-scale study shows that developers, lawmakers and users of such services need to rethink the design principles behind FRSs, especially for the task of face re-identification, taking cognizance of observed biases.

Large Language Models (LLMs) face threats from unsafe prompts. Existing methods for detecting unsafe prompts are primarily online moderation APIs or finetuned LLMs. These strategies, however, often require extensive and resource-intensive data collection and training processes. In this study, we propose GradSafe, which effectively detects unsafe prompts by scrutinizing the gradients of safety-critical parameters in LLMs. Our methodology is grounded in a pivotal observation: the gradients of an LLM's loss for unsafe prompts paired with compliance response exhibit similar patterns on certain safety-critical parameters. In contrast, safe prompts lead to markedly different gradient patterns. Building on this observation, GradSafe analyzes the gradients from prompts (paired with compliance responses) to accurately detect unsafe prompts. We show that GradSafe, applied to Llama-2 without further training, outperforms Llama Guard, despite its extensive finetuning with a large dataset, in detecting unsafe prompts. This superior performance is consistent across both zero-shot and adaptation scenarios, as evidenced by our evaluations on the ToxicChat and XSTest. The source code is available at //github.com/xyq7/GradSafe.

This paper presents an exhaustive quantitative and qualitative evaluation of Large Language Models (LLMs) for Knowledge Graph (KG) construction and reasoning. We employ eight distinct datasets that encompass aspects including entity, relation and event extraction, link prediction, and question answering. Empirically, our findings suggest that GPT-4 outperforms ChatGPT in the majority of tasks and even surpasses fine-tuned models in certain reasoning and question-answering datasets. Moreover, our investigation extends to the potential generalization ability of LLMs for information extraction, which culminates in the presentation of the Virtual Knowledge Extraction task and the development of the VINE dataset. Drawing on these empirical findings, we further propose AutoKG, a multi-agent-based approach employing LLMs for KG construction and reasoning, which aims to chart the future of this field and offer exciting opportunities for advancement. We anticipate that our research can provide invaluable insights for future undertakings of KG\footnote{Code and datasets will be available in //github.com/zjunlp/AutoKG.

Transformer-based pretrained language models (T-PTLMs) have achieved great success in almost every NLP task. The evolution of these models started with GPT and BERT. These models are built on the top of transformers, self-supervised learning and transfer learning. Transformed-based PTLMs learn universal language representations from large volumes of text data using self-supervised learning and transfer this knowledge to downstream tasks. These models provide good background knowledge to downstream tasks which avoids training of downstream models from scratch. In this comprehensive survey paper, we initially give a brief overview of self-supervised learning. Next, we explain various core concepts like pretraining, pretraining methods, pretraining tasks, embeddings and downstream adaptation methods. Next, we present a new taxonomy of T-PTLMs and then give brief overview of various benchmarks including both intrinsic and extrinsic. We present a summary of various useful libraries to work with T-PTLMs. Finally, we highlight some of the future research directions which will further improve these models. We strongly believe that this comprehensive survey paper will serve as a good reference to learn the core concepts as well as to stay updated with the recent happenings in T-PTLMs.

We propose UniViLM: a Unified Video and Language pre-training Model for multimodal understanding and generation. Motivated by the recent success of BERT based pre-training technique for NLP and image-language tasks, VideoBERT and CBT are proposed to exploit BERT model for video and language pre-training using narrated instructional videos. Different from their works which only pre-train understanding task, we propose a unified video-language pre-training model for both understanding and generation tasks. Our model comprises of 4 components including two single-modal encoders, a cross encoder and a decoder with the Transformer backbone. We first pre-train our model to learn the universal representation for both video and language on a large instructional video dataset. Then we fine-tune the model on two multimodal tasks including understanding task (text-based video retrieval) and generation task (multimodal video captioning). Our extensive experiments show that our method can improve the performance of both understanding and generation tasks and achieves the state-of-the art results.

Recommender systems are widely used in big information-based companies such as Google, Twitter, LinkedIn, and Netflix. A recommender system deals with the problem of information overload by filtering important information fragments according to users' preferences. In light of the increasing success of deep learning, recent studies have proved the benefits of using deep learning in various recommendation tasks. However, most proposed techniques only aim to target individuals, which cannot be efficiently applied in group recommendation. In this paper, we propose a deep learning architecture to solve the group recommendation problem. On the one hand, as different individual preferences in a group necessitate preference trade-offs in making group recommendations, it is essential that the recommendation model can discover substitutes among user behaviors. On the other hand, it has been observed that a user as an individual and as a group member behaves differently. To tackle such problems, we propose using an attention mechanism to capture the impact of each user in a group. Specifically, our model automatically learns the influence weight of each user in a group and recommends items to the group based on its members' weighted preferences. We conduct extensive experiments on four datasets. Our model significantly outperforms baseline methods and shows promising results in applying deep learning to the group recommendation problem.

北京阿比特科技有限公司