亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We revisit the relation between two fundamental property testing models for bounded-degree directed graphs: the bidirectional model in which the algorithms are allowed to query both the outgoing edges and incoming edges of a vertex, and the unidirectional model in which only queries to the outgoing edges are allowed. Czumaj, Peng and Sohler [STOC 2016] showed that for directed graphs with both maximum indegree and maximum outdegree upper bounded by $d$, any property that can be tested with query complexity $O_{\varepsilon,d}(1)$ in the bidirectional model can be tested with $n^{1-\Omega_{\varepsilon,d}(1)}$ queries in the unidirectional model. In particular, if the proximity parameter $\varepsilon$ approaches $0$, then the query complexity of the transformed tester in the unidirectional model approaches $n$. It was left open if this transformation can be further improved or there exists any property that exhibits such an extreme separation. We prove that testing subgraph-freeness in which the subgraph contains $k$ source components, requires $\Omega(n^{1-\frac{1}{k}})$ queries in the unidirectional model. This directly gives the first explicit properties that exhibit an $O_{\varepsilon,d}(1)$ vs $\Omega(n^{1-f(\varepsilon,d)})$ separation of the query complexities between the bidirectional model and unidirectional model, where $f(\varepsilon,d)$ is a function that approaches $0$ as $\varepsilon$ approaches $0$. Furthermore, our lower bound also resolves a conjecture by Hellweg and Sohler [ESA 2012] on the query complexity of testing $k$-star-freeness.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Processing(編程語言) · Markovian · 穩健性 · 相互獨立的 ·
2023 年 7 月 7 日

We observe n possibly dependent random variables, the distribution of which is presumed to be stationary even though this might not be true, and we aim at estimating the stationary distribution. We establish a non-asymptotic deviation bound for the Hellinger distance between the target distribution and our estimator. If the dependence within the observations is small, the estimator performs as good as if the data were independent and identically distributed. In addition our estimator is robust to misspecification and contamination. If the dependence is too high but the observed process is mixing, we can select a subset of observations that is almost independent and retrieve results similar to what we have in the i.i.d. case. We apply our procedure to the estimation of the invariant distribution of a diffusion process and to finite state space hidden Markov models.

In this paper we demonstrate how sub-Riemannian geometry can be used for manifold learning and surface reconstruction by combining local linear approximations of a point cloud to obtain lower dimensional bundles. Local approximations obtained by local PCAs are collected into a rank $k$ tangent subbundle on $\mathbb{R}^d$, $k<d$, which we call a principal subbundle. This determines a sub-Riemannian metric on $\mathbb{R}^d$. We show that sub-Riemannian geodesics with respect to this metric can successfully be applied to a number of important problems, such as: explicit construction of an approximating submanifold $M$, construction of a representation of the point-cloud in $\mathbb{R}^k$, and computation of distances between observations, taking the learned geometry into account. The reconstruction is guaranteed to equal the true submanifold in the limit case where tangent spaces are estimated exactly. Via simulations, we show that the framework is robust when applied to noisy data. Furthermore, the framework generalizes to observations on an a priori known Riemannian manifold.

We formulate, in lattice-theoretic terms, two novel algorithms inspired by Bradley's property directed reachability algorithm. For finding safe invariants or counterexamples, the first algorithm exploits over-approximations of both forward and backward transition relations, expressed abstractly by the notion of adjoints. In the absence of adjoints, one can use the second algorithm, which exploits lower sets and their principals. As a notable example of application, we consider quantitative reachability problems for Markov Decision Processes.

In 1982 Papadimitriou and Yannakakis introduced the Exact Matching problem, in which given a red and blue edge-colored graph $G$ and an integer $k$ one has to decide whether there exists a perfect matching in $G$ with exactly $k$ red edges. Even though a randomized polynomial-time algorithm for this problem was quickly found a few years later, it is still unknown today whether a deterministic polynomial-time algorithm exists. This makes the Exact Matching problem an important candidate to test the RP=P hypothesis. In this paper we focus on approximating Exact Matching. While there exists a simple algorithm that computes in deterministic polynomial-time an almost perfect matching with exactly $k$ red edges, not a lot of work focuses on computing perfect matchings with almost $k$ red edges. In fact such an algorithm for bipartite graphs running in deterministic polynomial-time was published only recently (STACS'23). It outputs a perfect matching with $k'$ red edges with the guarantee that $0.5k \leq k' \leq 1.5k$. In the present paper we aim at approximating the number of red edges without exceeding the limit of $k$ red edges. We construct a deterministic polynomial-time algorithm, which on bipartite graphs computes a perfect matching with $k'$ red edges such that $k/3 \leq k' \leq k$.

The Independent Cutset problem asks whether there is a set of vertices in a given graph that is both independent and a cutset. Such a problem is $\textsf{NP}$-complete even when the input graph is planar and has maximum degree five. In this paper, we first present a $\mathcal{O}^*(1.4423^{n})$-time algorithm for the problem. We also show how to compute a minimum independent cutset (if any) in the same running time. Since the property of having an independent cutset is MSO$_1$-expressible, our main results are concerned with structural parameterizations for the problem considering parameters that are not bounded by a function of the clique-width of the input. We present $\textsf{FPT}$-time algorithms for the problem considering the following parameters: the dual of the maximum degree, the dual of the solution size, the size of a dominating set (where a dominating set is given as an additional input), the size of an odd cycle transversal, the distance to chordal graphs, and the distance to $P_5$-free graphs. We close by introducing the notion of $\alpha$-domination, which allows us to identify more fixed-parameter tractable and polynomial-time solvable cases.

We consider the problem of empirical Bayes estimation for (multivariate) Poisson means. Existing solutions that have been shown theoretically optimal for minimizing the regret (excess risk over the Bayesian oracle that knows the prior) have several shortcomings. For example, the classical Robbins estimator does not retain the monotonicity property of the Bayes estimator and performs poorly under moderate sample size. Estimators based on the minimum distance and non-parametric maximum likelihood (NPMLE) methods correct these issues, but are computationally expensive with complexity growing exponentially with dimension. Extending the approach of Barbehenn and Zhao (2022), in this work we construct monotone estimators based on empirical risk minimization (ERM) that retain similar theoretical guarantees and can be computed much more efficiently. Adapting the idea of offset Rademacher complexity Liang et al. (2015) to the non-standard loss and function class in empirical Bayes, we show that the shape-constrained ERM estimator attains the minimax regret within constant factors in one dimension and within logarithmic factors in multiple dimensions.

We study universal rates for multiclass classification, establishing the optimal rates (up to log factors) for all hypothesis classes. This generalizes previous results on binary classification (Bousquet, Hanneke, Moran, van Handel, and Yehudayoff, 2021), and resolves an open question studied by Kalavasis, Velegkas, and Karbasi (2022) who handled the multiclass setting with a bounded number of class labels. In contrast, our result applies for any countable label space. Even for finite label space, our proofs provide a more precise bounds on the learning curves, as they do not depend on the number of labels. Specifically, we show that any class admits exponential rates if and only if it has no infinite Littlestone tree, and admits (near-)linear rates if and only if it has no infinite Daniely-Shalev-Shwartz-Littleston (DSL) tree, and otherwise requires arbitrarily slow rates. DSL trees are a new structure we define in this work, in which each node of the tree is given by a pseudo-cube of possible classifications of a given set of points. Pseudo-cubes are a structure, rooted in the work of Daniely and Shalev-Shwartz (2014), and recently shown by Brukhim, Carmon, Dinur, Moran, and Yehudayoff (2022) to characterize PAC learnability (i.e., uniform rates) for multiclass classification. We also resolve an open question of Kalavasis, Velegkas, and Karbasi (2022) regarding the equivalence of classes having infinite Graph-Littlestone (GL) trees versus infinite Natarajan-Littlestone (NL) trees, showing that they are indeed equivalent.

Since Jacobson [FOCS89] initiated the investigation of succinct graph encodings 35 years ago, there has been a long list of results on balancing the generality of the class, the speed, the succinctness of the encoding, and the query support. Let Cn denote the set consisting of the graphs in a class C that with at most n vertices. A class C is nontrivial if the information-theoretically min number log |Cn| of bits to distinguish the members of Cn is Omega(n). An encoding scheme based upon a single class C is C-opt if it takes a graph G of Cn and produces in deterministic O(n) time an encoded string of at most log |Cn| + o(log |Cn|) bits from which G can be recovered in O(n) time. Despite the extensive efforts in the literature, trees and general graphs were the only nontrivial classes C admitting C-opt encoding schemes that support the degree query in O(1) time. Basing an encoding scheme upon a single class ignores the possibility of a shorter encoded string using additional properties of the graph input. To leverage the inherent structures of individual graphs, we propose to base an encoding scheme upon of multiple classes: An encoding scheme based upon a family F of classes, accepting all graphs in UF, is F-opt if it is C-opt for each C in F. Having a C-opt encoding scheme for each C in F does not guarantee an F-opt encoding scheme. Under this more stringent criterion, we present an F-opt encoding scheme for a family F of an infinite number of classes such that UF comprises all graphs of bounded Hadwiger numbers. F consists of the nontrivial quasi-monotone classes of k-clique-minor-free graphs for each positive integer k. Our F-opt scheme supports queries of degree, adjacency, neighbor-listing, and bounded-distance shortest path in O(1) time per output. We broaden the graph classes admitting opt encoding schemes that also efficiently support fundamental queries.

Effective resistances are ubiquitous in graph algorithms and network analysis. In this work, we study sublinear time algorithms to approximate the effective resistance of an adjacent pair $s$ and $t$. We consider the classical adjacency list model for local algorithms. While recent works have provided sublinear time algorithms for expander graphs, we prove several lower bounds for general graphs of $n$ vertices and $m$ edges: 1.It needs $\Omega(n)$ queries to obtain $1.01$-approximations of the effective resistance of an adjacent pair $s$ and $t$, even for graphs of degree at most 3 except $s$ and $t$. 2.For graphs of degree at most $d$ and any parameter $\ell$, it needs $\Omega(m/\ell)$ queries to obtain $c \cdot \min\{d, \ell\}$-approximations where $c>0$ is a universal constant. Moreover, we supplement the first lower bound by providing a sublinear time $(1+\epsilon)$-approximation algorithm for graphs of degree 2 except the pair $s$ and $t$. One of our technical ingredients is to bound the expansion of a graph in terms of the smallest non-trivial eigenvalue of its Laplacian matrix after removing edges. We discover a new lower bound on the eigenvalues of perturbed graphs (resp. perturbed matrices) by incorporating the effective resistance of the removed edge (resp. the leverage scores of the removed rows), which may be of independent interest.

The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.

北京阿比特科技有限公司