亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Inferring programs which generate 2D and 3D shapes is important for reverse engineering, editing, and more. Training models to perform this task is complicated because paired (shape, program) data is not readily available for many domains, making exact supervised learning infeasible. However, it is possible to get paired data by compromising the accuracy of either the assigned program labels or the shape distribution. Wake-sleep methods use samples from a generative model of shape programs to approximate the distribution of real shapes. In self-training, shapes are passed through a recognition model, which predicts programs that are treated as pseudo-labels for those shapes. Related to these approaches, we introduce a novel self-training variant unique to program inference, where program pseudo-labels are paired with their executed output shapes, avoiding label mismatch at the cost of an approximate shape distribution. We propose to group these regimes under a single conceptual framework, where training is performed with maximum likelihood updates sourced from either Pseudo-Labels or an Approximate Distribution (PLAD). We evaluate these techniques on multiple 2D and 3D shape program inference domains. Compared with policy gradient reinforcement learning, we show that PLAD techniques infer more accurate shape programs and converge significantly faster. Finally, we propose to combine updates from different PLAD methods within the training of a single model, and find that this approach outperforms any individual technique.

相關內容

We present a novel and well automatable approach to formal verification of programs with underspecified semantics, i.e., a language semantics that leaves open the order of certain evaluations. First, we reduce this problem to non-determinism of distributed systems, automatically extracting a distributed Active Object model from underspecified, sequential C code. This translation process provides a fully formal semantics for the considered C subset. In the extracted model every non-deterministic choice corresponds to one possible evaluation order. This step also automatically translates specifications in the ANSI/ISO C Specification Language (ACSL) into method contracts and object invariants for Active Objects. We then perform verification on the specified Active Objects model. For this we have implemented a theorem prover Crowbar based on the Behavioral Program Logic (BPL), which verifies the extracted model with respect to the translated specification and ensures the original property of the C code for all possible evaluation orders. By using model extraction, we can use standard tools, without designing a new complex program logic to deal with underspecification. The case study used is highly underspecified and cannot be verified with existing tools for C.

The Wasserstein distance is a distance between two probability distributions and has recently gained increasing popularity in statistics and machine learning, owing to its attractive properties. One important approach to extending this distance is using low-dimensional projections of distributions to avoid a high computational cost and the curse of dimensionality in empirical estimation, such as the sliced Wasserstein or max-sliced Wasserstein distances. Despite their practical success in machine learning tasks, the availability of statistical inferences for projection-based Wasserstein distances is limited owing to the lack of distributional limit results. In this paper, we consider distances defined by integrating or maximizing Wasserstein distances between low-dimensional projections of two probability distributions. Then we derive limit distributions regarding these distances when the two distributions are supported on finite points. We also propose a bootstrap procedure to estimate quantiles of limit distributions from data. This facilitates asymptotically exact interval estimation and hypothesis testing for these distances. Our theoretical results are based on the arguments of Sommerfeld and Munk (2018) for deriving distributional limits regarding the original Wasserstein distance on finite spaces and the theory of sensitivity analysis in nonlinear programming. Finally, we conduct numerical experiments to illustrate the theoretical results and demonstrate the applicability of our inferential methods to real data analysis.

We study a new generative modeling technique based on adversarial training (AT). We show that in a setting where the model is trained to discriminate in-distribution data from adversarial examples perturbed from out-distribution samples, the model learns the support of the in-distribution data. The learning process is also closely related to MCMC-based maximum likelihood learning of energy-based models (EBMs), and can be considered as an approximate maximum likelihood learning method. We show that this AT generative model achieves competitive image generation performance to state-of-the-art EBMs, and at the same time is stable to train and has better sampling efficiency. We demonstrate that the AT generative model is well-suited for the task of image translation and worst-case out-of-distribution detection.

Deep neural networks are powerful tools for representation learning, but can easily overfit to noisy labels which are prevalent in many real-world scenarios. Generally, noisy supervision could stem from variation among labelers, label corruption by adversaries, etc. To combat such label noises, one popular line of approach is to apply customized weights to the training instances, so that the corrupted examples contribute less to the model learning. However, such learning mechanisms potentially erase important information about the data distribution and therefore yield suboptimal results. To leverage useful information from the corrupted instances, an alternative is the bootstrapping loss, which reconstructs new training targets on-the-fly by incorporating the network's own predictions (i.e., pseudo-labels). In this paper, we propose a more generic learnable loss objective which enables a joint reweighting of instances and labels at once. Specifically, our method dynamically adjusts the per-sample importance weight between the real observed labels and pseudo-labels, where the weights are efficiently determined in a meta process. Compared to the previous instance reweighting methods, our approach concurrently conducts implicit relabeling, and thereby yield substantial improvements with almost no extra cost. Extensive experimental results demonstrated the strengths of our approach over existing methods on multiple natural and medical image benchmark datasets, including CIFAR-10, CIFAR-100, ISIC2019 and Clothing 1M. The code is publicly available at //github.com/yuyinzhou/L2B.

Approaches based on deep neural networks have achieved striking performance when testing data and training data share similar distribution, but can significantly fail otherwise. Therefore, eliminating the impact of distribution shifts between training and testing data is crucial for building performance-promising deep models. Conventional methods assume either the known heterogeneity of training data (e.g. domain labels) or the approximately equal capacities of different domains. In this paper, we consider a more challenging case where neither of the above assumptions holds. We propose to address this problem by removing the dependencies between features via learning weights for training samples, which helps deep models get rid of spurious correlations and, in turn, concentrate more on the true connection between discriminative features and labels. Extensive experiments clearly demonstrate the effectiveness of our method on multiple distribution generalization benchmarks compared with state-of-the-art counterparts. Through extensive experiments on distribution generalization benchmarks including PACS, VLCS, MNIST-M, and NICO, we show the effectiveness of our method compared with state-of-the-art counterparts.

We propose a novel approach to disentangle the generative factors of variation underlying a given set of observations. Our method builds upon the idea that the (unknown) low-dimensional manifold underlying the data space can be explicitly modeled as a product of submanifolds. This gives rise to a new definition of disentanglement, and to a novel weakly-supervised algorithm for recovering the unknown explanatory factors behind the data. At training time, our algorithm only requires pairs of non i.i.d. data samples whose elements share at least one, possibly multidimensional, generative factor of variation. We require no knowledge on the nature of these transformations, and do not make any limiting assumption on the properties of each subspace. Our approach is easy to implement, and can be successfully applied to different kinds of data (from images to 3D surfaces) undergoing arbitrary transformations. In addition to standard synthetic benchmarks, we showcase our method in challenging real-world applications, where we compare favorably with the state of the art.

This paper is concerned with data-driven unsupervised domain adaptation, where it is unknown in advance how the joint distribution changes across domains, i.e., what factors or modules of the data distribution remain invariant or change across domains. To develop an automated way of domain adaptation with multiple source domains, we propose to use a graphical model as a compact way to encode the change property of the joint distribution, which can be learned from data, and then view domain adaptation as a problem of Bayesian inference on the graphical models. Such a graphical model distinguishes between constant and varied modules of the distribution and specifies the properties of the changes across domains, which serves as prior knowledge of the changing modules for the purpose of deriving the posterior of the target variable $Y$ in the target domain. This provides an end-to-end framework of domain adaptation, in which additional knowledge about how the joint distribution changes, if available, can be directly incorporated to improve the graphical representation. We discuss how causality-based domain adaptation can be put under this umbrella. Experimental results on both synthetic and real data demonstrate the efficacy of the proposed framework for domain adaptation. The code is available at //github.com/mgong2/DA_Infer .

Discovering causal structure among a set of variables is a fundamental problem in many empirical sciences. Traditional score-based casual discovery methods rely on various local heuristics to search for a Directed Acyclic Graph (DAG) according to a predefined score function. While these methods, e.g., greedy equivalence search, may have attractive results with infinite samples and certain model assumptions, they are usually less satisfactory in practice due to finite data and possible violation of assumptions. Motivated by recent advances in neural combinatorial optimization, we propose to use Reinforcement Learning (RL) to search for the DAG with the best scoring. Our encoder-decoder model takes observable data as input and generates graph adjacency matrices that are used to compute rewards. The reward incorporates both the predefined score function and two penalty terms for enforcing acyclicity. In contrast with typical RL applications where the goal is to learn a policy, we use RL as a search strategy and our final output would be the graph, among all graphs generated during training, that achieves the best reward. We conduct experiments on both synthetic and real datasets, and show that the proposed approach not only has an improved search ability but also allows a flexible score function under the acyclicity constraint.

Graph convolution is the core of most Graph Neural Networks (GNNs) and usually approximated by message passing between direct (one-hop) neighbors. In this work, we remove the restriction of using only the direct neighbors by introducing a powerful, yet spatially localized graph convolution: Graph diffusion convolution (GDC). GDC leverages generalized graph diffusion, examples of which are the heat kernel and personalized PageRank. It alleviates the problem of noisy and often arbitrarily defined edges in real graphs. We show that GDC is closely related to spectral-based models and thus combines the strengths of both spatial (message passing) and spectral methods. We demonstrate that replacing message passing with graph diffusion convolution consistently leads to significant performance improvements across a wide range of models on both supervised and unsupervised tasks and a variety of datasets. Furthermore, GDC is not limited to GNNs but can trivially be combined with any graph-based model or algorithm (e.g. spectral clustering) without requiring any changes to the latter or affecting its computational complexity. Our implementation is available online.

Despite of the success of Generative Adversarial Networks (GANs) for image generation tasks, the trade-off between image diversity and visual quality are an well-known issue. Conventional techniques achieve either visual quality or image diversity; the improvement in one side is often the result of sacrificing the degradation in the other side. In this paper, we aim to achieve both simultaneously by improving the stability of training GANs. A key idea of the proposed approach is to implicitly regularizing the discriminator using a representative feature. For that, this representative feature is extracted from the data distribution, and then transferred to the discriminator for enforcing slow updates of the gradient. Consequently, the entire training process is stabilized because the learning curve of discriminator varies slowly. Based on extensive evaluation, we demonstrate that our approach improves the visual quality and diversity of state-of-the art GANs.

北京阿比特科技有限公司