The problem of $X$-secure $T$-colluding symmetric Private Polynomial Computation (PPC) from coded storage system with $B$ Byzantine and $U$ unresponsive servers is studied in this paper. Specifically, a dataset consisting of $M$ files is stored across $N$ distributed servers according to $(N,K+X)$ Maximum Distance Separable (MDS) codes such that any group of up to $X$ colluding servers can not learn anything about the data files. A user wishes to privately evaluate one out of a set of candidate polynomial functions over the $M$ files from the system, while guaranteeing that any $T$ colluding servers can not learn anything about the identity of the desired function and the user can not learn anything about the $M$ data files more than the desired polynomial function evaluations, in the presence of $B$ Byzantine servers that can send arbitrary responses maliciously to confuse the user and $U$ unresponsive servers that will not respond any information at all. A novel symmetric PPC scheme using Lagrange encoding is proposed. This scheme achieves a PPC rate of $1-\frac{G(K+X-1)+T+2B}{N-U}$ with secrecy rate $\frac{G(K+X-1)+T}{N-(G(K+X-1)+T+2B+U)}$ and finite field size $N+\max\{K,N-(G(K+X-1)+T+2B+U)\}$, where $G$ is the maximum degree over all the candidate polynomial functions. Moreover, to further measure the efficiency of PPC schemes, upload cost, query complexity, server computation complexity and decoding complexity required to implement the scheme are analyzed. Remarkably, the PPC setup studied in this paper generalizes all the previous MDS coded PPC setups and the degraded schemes strictly outperform the best known schemes in terms of (asymptotical) PPC rate, which is the main concern of the PPC schemes.
This paper focuses on stochastic saddle point problems with decision-dependent distributions in both the static and time-varying settings. These are problems whose objective is the expected value of a stochastic payoff function, where random variables are drawn from a distribution induced by a distributional map. For general distributional maps, the problem of finding saddle points is in general computationally burdensome, even if the distribution is known. To enable a tractable solution approach, we introduce the notion of equilibrium points -- which are saddle points for the stationary stochastic minimax problem that they induce -- and provide conditions for their existence and uniqueness. We demonstrate that the distance between the two classes of solutions is bounded provided that the objective has a strongly-convex-strongly-concave payoff and Lipschitz continuous distributional map. We develop deterministic and stochastic primal-dual algorithms and demonstrate their convergence to the equilibrium point. In particular, by modeling errors emerging from a stochastic gradient estimator as sub-Weibull random variables, we provide error bounds in expectation and in high probability that hold for each iteration; moreover, we show convergence to a neighborhood in expectation and almost surely. Finally, we investigate a condition on the distributional map -- which we call opposing mixture dominance -- that ensures the objective is strongly-convex-strongly-concave. Under this assumption, we show that primal-dual algorithms converge to the saddle points in a similar fashion.
A smooth and strictly convex function on an open convex domain induces both (1) a Hessian manifold with respect to the standard flat Euclidean connection, and (2) a dually flat space of information geometry. We first review these constructions and illustrate how to instantiate them for (a) full regular exponential families from their partition functions, (b) regular homogeneous cones from their characteristic functions, and (c) mixture families from their Shannon negentropy functions. Although these structures can be explicitly built for many common examples of the first two classes, the differential entropy of a continuous statistical mixture with distinct prescribed density components sharing the same support is hitherto not known in closed form, hence forcing implementations of mixture family manifolds in practice using Monte Carlo sampling. In this work, we report a notable exception: The family of mixtures defined as the convex combination of two prescribed and distinct Cauchy distributions. As a byproduct, we report closed-form formula for the Jensen-Shannon divergence between two mixtures of two prescribed Cauchy components.
We define and study a class of Reed-Muller type error-correcting codes obtained from elementary symmetric functions in finitely many variables. We determine the code parameters and higher weight spectra in the simplest cases.
Recent years have witnessed a trend of secure processor design in both academia and industry. Secure processors with hardware-enforced isolation can be a solid foundation of cloud computation in the future. However, due to recent side-channel attacks, the commercial secure processors failed to deliver the promises of a secure isolated execution environment. Sensitive information inside the secure execution environment always gets leaked via side channels. This work considers the most powerful software-based side-channel attackers, i.e., an All Digital State Observing (ADSO) adversary who can observe all digital states, including all digital states in secure enclaves. Traditional signature schemes are not secure in ADSO adversarial model. We introduce a new cryptographic primitive called One-Time Signature with Secret Key Exposure (OTS-SKE), which ensures no one can forge a valid signature of a new message or nonce even if all secret session keys are leaked. OTS-SKE enables us to sign attestation reports securely under the ADSO adversary. We also minimize the trusted computing base by introducing a secure co-processor into the system, and the interaction between the secure co-processor and the attestation processor is unidirectional. That is, the co-processor takes no inputs from the processor and only generates secret keys for the processor to fetch. Our experimental results show that the signing of OTS-SKE is faster than that of Elliptic Curve Digital Signature Algorithm (ECDSA) used in Intel SGX.
We study the dihedral multi-reference alignment problem of estimating the orbit of a signal from multiple noisy observations of the signal, acted on by random elements of the dihedral group. We show that if the group elements are drawn from a generic distribution, the orbit of a generic signal is uniquely determined from the second moment of the observations. This implies that the optimal estimation rate in the high noise regime is proportional to the square of the variance of the noise. This is the first result of this type for multi-reference alignment over a non-abelian group with a non-uniform distribution of group elements. Based on tools from invariant theory and algebraic geometry, we also delineate conditions for unique orbit recovery for multi-reference alignment models over finite groups (namely, when the dihedral group is replaced by a general finite group) when the group elements are drawn from a generic distribution. Finally, we design and study numerically three computational frameworks for estimating the signal based on group synchronization, expectation-maximization, and the method of moments.
This paper presents Poplar, a new system for solving the private heavy-hitters problem. In this problem, there are many clients and a small set of data-collection servers. Each client holds a private bitstring. The servers want to recover the set of all popular strings, without learning anything else about any client's string. A web-browser vendor, for instance, can use Poplar to figure out which homepages are popular, without learning any user's homepage. We also consider the simpler private subset-histogram problem, in which the servers want to count how many clients hold strings in a particular set without revealing this set to the clients. Poplar uses two data-collection servers and, in a protocol run, each client send sends only a single message to the servers. Poplar protects client privacy against arbitrary misbehavior by one of the servers and our approach requires no public-key cryptography (except for secure channels), nor general-purpose multiparty computation. Instead, we rely on incremental distributed point functions, a new cryptographic tool that allows a client to succinctly secret-share the labels on the nodes of an exponentially large binary tree, provided that the tree has a single non-zero path. Along the way, we develop new general tools for providing malicious security in applications of distributed point functions.
We consider a matrix completion problem that exploits social or item similarity graphs as side information. We develop a universal, parameter-free, and computationally efficient algorithm that starts with hierarchical graph clustering and then iteratively refines estimates both on graph clustering and matrix ratings. Under a hierarchical stochastic block model that well respects practically-relevant social graphs and a low-rank rating matrix model (to be detailed), we demonstrate that our algorithm achieves the information-theoretic limit on the number of observed matrix entries (i.e., optimal sample complexity) that is derived by maximum likelihood estimation together with a lower-bound impossibility result. One consequence of this result is that exploiting the hierarchical structure of social graphs yields a substantial gain in sample complexity relative to the one that simply identifies different groups without resorting to the relational structure across them. We conduct extensive experiments both on synthetic and real-world datasets to corroborate our theoretical results as well as to demonstrate significant performance improvements over other matrix completion algorithms that leverage graph side information.
We propose a reparametrization scheme to address the challenges of applying differentially private SGD on large neural networks, which are 1) the huge memory cost of storing individual gradients, 2) the added noise suffering notorious dimensional dependence. Specifically, we reparametrize each weight matrix with two \emph{gradient-carrier} matrices of small dimension and a \emph{residual weight} matrix. We argue that such reparametrization keeps the forward/backward process unchanged while enabling us to compute the projected gradient without computing the gradient itself. To learn with differential privacy, we design \emph{reparametrized gradient perturbation (RGP)} that perturbs the gradients on gradient-carrier matrices and reconstructs an update for the original weight from the noisy gradients. Importantly, we use historical updates to find the gradient-carrier matrices, whose optimality is rigorously justified under linear regression and empirically verified with deep learning tasks. RGP significantly reduces the memory cost and improves the utility. For example, we are the first able to apply differential privacy on the BERT model and achieve an average accuracy of $83.9\%$ on four downstream tasks with $\epsilon=8$, which is within $5\%$ loss compared to the non-private baseline but enjoys much lower privacy leakage risk.
Alternating Direction Method of Multipliers (ADMM) is a widely used tool for machine learning in distributed settings, where a machine learning model is trained over distributed data sources through an interactive process of local computation and message passing. Such an iterative process could cause privacy concerns of data owners. The goal of this paper is to provide differential privacy for ADMM-based distributed machine learning. Prior approaches on differentially private ADMM exhibit low utility under high privacy guarantee and often assume the objective functions of the learning problems to be smooth and strongly convex. To address these concerns, we propose a novel differentially private ADMM-based distributed learning algorithm called DP-ADMM, which combines an approximate augmented Lagrangian function with time-varying Gaussian noise addition in the iterative process to achieve higher utility for general objective functions under the same differential privacy guarantee. We also apply the moments accountant method to bound the end-to-end privacy loss. The theoretical analysis shows that DP-ADMM can be applied to a wider class of distributed learning problems, is provably convergent, and offers an explicit utility-privacy tradeoff. To our knowledge, this is the first paper to provide explicit convergence and utility properties for differentially private ADMM-based distributed learning algorithms. The evaluation results demonstrate that our approach can achieve good convergence and model accuracy under high end-to-end differential privacy guarantee.
Discrete random structures are important tools in Bayesian nonparametrics and the resulting models have proven effective in density estimation, clustering, topic modeling and prediction, among others. In this paper, we consider nested processes and study the dependence structures they induce. Dependence ranges between homogeneity, corresponding to full exchangeability, and maximum heterogeneity, corresponding to (unconditional) independence across samples. The popular nested Dirichlet process is shown to degenerate to the fully exchangeable case when there are ties across samples at the observed or latent level. To overcome this drawback, inherent to nesting general discrete random measures, we introduce a novel class of latent nested processes. These are obtained by adding common and group-specific completely random measures and, then, normalising to yield dependent random probability measures. We provide results on the partition distributions induced by latent nested processes, and develop an Markov Chain Monte Carlo sampler for Bayesian inferences. A test for distributional homogeneity across groups is obtained as a by product. The results and their inferential implications are showcased on synthetic and real data.