Neural architecture search (NAS) for Graph neural networks (GNNs), called NAS-GNNs, has achieved significant performance over manually designed GNN architectures. However, these methods inherit issues from the conventional NAS methods, such as high computational cost and optimization difficulty. More importantly, previous NAS methods have ignored the uniqueness of GNNs, where GNNs possess expressive power without training. With the randomly-initialized weights, we can then seek the optimal architecture parameters via the sparse coding objective and derive a novel NAS-GNNs method, namely neural architecture coding (NAC). Consequently, our NAC holds a no-update scheme on GNNs and can efficiently compute in linear time. Empirical evaluations on multiple GNN benchmark datasets demonstrate that our approach leads to state-of-the-art performance, which is up to $200\times$ faster and $18.8\%$ more accurate than the strong baselines.
Although Deep neural networks (DNNs) have shown a strong capacity to solve large-scale problems in many areas, such DNNs are hard to be deployed in real-world systems due to their voluminous parameters. To tackle this issue, Teacher-Student architectures were proposed, where simple student networks with a few parameters can achieve comparable performance to deep teacher networks with many parameters. Recently, Teacher-Student architectures have been effectively and widely embraced on various knowledge distillation (KD) objectives, including knowledge compression, knowledge expansion, knowledge adaptation, and knowledge enhancement. With the help of Teacher-Student architectures, current studies are able to achieve multiple distillation objectives through lightweight and generalized student networks. Different from existing KD surveys that primarily focus on knowledge compression, this survey first explores Teacher-Student architectures across multiple distillation objectives. This survey presents an introduction to various knowledge representations and their corresponding optimization objectives. Additionally, we provide a systematic overview of Teacher-Student architectures with representative learning algorithms and effective distillation schemes. This survey also summarizes recent applications of Teacher-Student architectures across multiple purposes, including classification, recognition, generation, ranking, and regression. Lastly, potential research directions in KD are investigated, focusing on architecture design, knowledge quality, and theoretical studies of regression-based learning, respectively. Through this comprehensive survey, industry practitioners and the academic community can gain valuable insights and guidelines for effectively designing, learning, and applying Teacher-Student architectures on various distillation objectives.
We present CLASSLA-Stanza, a pipeline for automatic linguistic annotation of the South Slavic languages, which is based on the Stanza natural language processing pipeline. We describe the main improvements in CLASSLA-Stanza with respect to Stanza, and give a detailed description of the model training process for the latest 2.1 release of the pipeline. We also report performance scores produced by the pipeline for different languages and varieties. CLASSLA-Stanza exhibits consistently high performance across all the supported languages and outperforms or expands its parent pipeline Stanza at all the supported tasks. We also present the pipeline's new functionality enabling efficient processing of web data and the reasons that led to its implementation.
How to identify those equivalent entities between knowledge graphs (KGs), which is called Entity Alignment (EA), is a long-standing challenge. So far, many methods have been proposed, with recent focus on leveraging Deep Learning to solve this problem. However, we observe that most of the efforts has been paid to having better representation of entities, rather than improving entity matching from the learned representations. In fact, how to efficiently infer the entity pairs from this similarity matrix, which is essentially a matching problem, has been largely ignored by the community. Motivated by this observation, we conduct an in-depth analysis on existing algorithms that are particularly designed for solving this matching problem, and propose a novel matching method, named Bidirectional Matching (BMat). Our extensive experimental results on public datasets indicate that there is currently no single silver bullet solution for EA. In other words, different classes of entity similarity estimation may require different matching algorithms to reach the best EA results for each class. We finally conclude that using PARIS, the state-of-the-art EA approach, with BMat gives the best combination in terms of EA performance and the algorithm's time and space complexity.
With deep neural networks (DNNs) emerging as the backbone in a multitude of computer vision tasks, their adoption in real-world applications broadens continuously. Given the abundance and omnipresence of smart devices in the consumer landscape, "smart ecosystems'' are being formed where sensing happens concurrently rather than standalone. This is shifting the on-device inference paradigm towards deploying centralised neural processing units (NPUs) at the edge, where multiple devices (e.g. in smart homes or autonomous vehicles) can stream their data for processing with dynamic rates. While this provides enhanced potential for input batching, naive solutions can lead to subpar performance and quality of experience, especially under spiking loads. At the same time, the deployment of dynamic DNNs, comprising stochastic computation graphs (e.g. early-exit (EE) models), introduces a new dimension of dynamic behaviour in such systems. In this work, we propose a novel early-exit-aware scheduling algorithm that allows sample preemption at run time, to account for the dynamicity introduced both by the arrival and early-exiting processes. At the same time, we introduce two novel dimensions to the design space of the NPU hardware architecture, namely Fluid Batching and Stackable Processing Elements, that enable run-time adaptability to different batch sizes and significantly improve the NPU utilisation even at small batches. Our evaluation shows that the proposed system achieves an average 1.97x and 6.7x improvement over state-of-the-art DNN streaming systems in terms of average latency and tail latency service-level objective (SLO) satisfaction, respectively.
NetFlow data is a popular network log format used by many network analysts and researchers. The advantages of using NetFlow over deep packet inspection are that it is easier to collect and process, and it is less privacy intrusive. Many works have used machine learning to detect network attacks using NetFlow data. The first step for these machine learning pipelines is to pre-process the data before it is given to the machine learning algorithm. Many approaches exist to pre-process NetFlow data; however, these simply apply existing methods to the data, not considering the specific properties of network data. We argue that for data originating from software systems, such as NetFlow or software logs, similarities in frequency and contexts of feature values are more important than similarities in the value itself. In this work, we propose an encoding algorithm that directly takes the frequency and the context of the feature values into account when the data is being processed. Different types of network behaviours can be clustered using this encoding, thus aiding the process of detecting anomalies within the network. We train several machine learning models for anomaly detection using the data that has been encoded with our encoding algorithm. We evaluate the effectiveness of our encoding on a new dataset that we created for network attacks on Kubernetes clusters and two well-known public NetFlow datasets. We empirically demonstrate that the machine learning models benefit from using our encoding for anomaly detection.
Graph neural networks (GNNs) have demonstrated a significant boost in prediction performance on graph data. At the same time, the predictions made by these models are often hard to interpret. In that regard, many efforts have been made to explain the prediction mechanisms of these models from perspectives such as GNNExplainer, XGNN and PGExplainer. Although such works present systematic frameworks to interpret GNNs, a holistic review for explainable GNNs is unavailable. In this survey, we present a comprehensive review of explainability techniques developed for GNNs. We focus on explainable graph neural networks and categorize them based on the use of explainable methods. We further provide the common performance metrics for GNNs explanations and point out several future research directions.
Convolutional neural networks (CNN) are the dominant deep neural network (DNN) architecture for computer vision. Recently, Transformer and multi-layer perceptron (MLP)-based models, such as Vision Transformer and MLP-Mixer, started to lead new trends as they showed promising results in the ImageNet classification task. In this paper, we conduct empirical studies on these DNN structures and try to understand their respective pros and cons. To ensure a fair comparison, we first develop a unified framework called SPACH which adopts separate modules for spatial and channel processing. Our experiments under the SPACH framework reveal that all structures can achieve competitive performance at a moderate scale. However, they demonstrate distinctive behaviors when the network size scales up. Based on our findings, we propose two hybrid models using convolution and Transformer modules. The resulting Hybrid-MS-S+ model achieves 83.9% top-1 accuracy with 63M parameters and 12.3G FLOPS. It is already on par with the SOTA models with sophisticated designs. The code and models will be made publicly available.
Generative adversarial networks (GANs) have been extensively studied in the past few years. Arguably their most significant impact has been in the area of computer vision where great advances have been made in challenges such as plausible image generation, image-to-image translation, facial attribute manipulation and similar domains. Despite the significant successes achieved to date, applying GANs to real-world problems still poses significant challenges, three of which we focus on here. These are: (1) the generation of high quality images, (2) diversity of image generation, and (3) stable training. Focusing on the degree to which popular GAN technologies have made progress against these challenges, we provide a detailed review of the state of the art in GAN-related research in the published scientific literature. We further structure this review through a convenient taxonomy we have adopted based on variations in GAN architectures and loss functions. While several reviews for GANs have been presented to date, none have considered the status of this field based on their progress towards addressing practical challenges relevant to computer vision. Accordingly, we review and critically discuss the most popular architecture-variant, and loss-variant GANs, for tackling these challenges. Our objective is to provide an overview as well as a critical analysis of the status of GAN research in terms of relevant progress towards important computer vision application requirements. As we do this we also discuss the most compelling applications in computer vision in which GANs have demonstrated considerable success along with some suggestions for future research directions. Code related to GAN-variants studied in this work is summarized on //github.com/sheqi/GAN_Review.
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.
Deep convolutional neural networks (CNNs) have recently achieved great success in many visual recognition tasks. However, existing deep neural network models are computationally expensive and memory intensive, hindering their deployment in devices with low memory resources or in applications with strict latency requirements. Therefore, a natural thought is to perform model compression and acceleration in deep networks without significantly decreasing the model performance. During the past few years, tremendous progress has been made in this area. In this paper, we survey the recent advanced techniques for compacting and accelerating CNNs model developed. These techniques are roughly categorized into four schemes: parameter pruning and sharing, low-rank factorization, transferred/compact convolutional filters, and knowledge distillation. Methods of parameter pruning and sharing will be described at the beginning, after that the other techniques will be introduced. For each scheme, we provide insightful analysis regarding the performance, related applications, advantages, and drawbacks etc. Then we will go through a few very recent additional successful methods, for example, dynamic capacity networks and stochastic depths networks. After that, we survey the evaluation matrix, the main datasets used for evaluating the model performance and recent benchmarking efforts. Finally, we conclude this paper, discuss remaining challenges and possible directions on this topic.