A bare meaning representation can be expressed in various ways using natural language, depending on how the information is structured on the surface level. We are interested in finding ways to control topic-focus articulation when generating text from meaning. We focus on distinguishing active and passive voice for sentences with transitive verbs. The idea is to add pragmatic information such as topic to the meaning representation, thereby forcing either active or passive voice when given to a natural language generation system. We use graph neural models because there is no explicit information about word order in a meaning represented by a graph. We try three different methods for topic-focus articulation (TFA) employing graph neural models for a meaning-to-text generation task. We propose a novel encoding strategy about node aggregation in graph neural models, which instead of traditional encoding by aggregating adjacent node information, learns node representations by using depth-first search. The results show our approach can get competitive performance with state-of-art graph models on general text generation, and lead to significant improvements on the task of active-passive conversion compared to traditional adjacency-based aggregation strategies. Different types of TFA can have a huge impact on the performance of the graph models.
Recent studies have highlighted a phenomenon in large language models (LLMs) known as "the reversal curse," in which the order of knowledge entities in the training data biases the models' comprehension. For example, if a model is trained on sentences where entity A consistently appears before entity B, it can respond to queries about A by providing B as the answer. However, it may encounter confusion when presented with questions concerning B. We contend that the reversal curse is partially a result of specific model training objectives, particularly evident in the prevalent use of the next-token prediction within most causal language models. For the next-token prediction, models solely focus on a token's preceding context, resulting in a restricted comprehension of the input. In contrast, we illustrate that the GLM, trained using the autoregressive blank infilling objective where tokens to be predicted have access to the entire context, exhibits better resilience against the reversal curse. We propose a novel training method, BIdirectional Casual language modeling Optimization (BICO), designed to mitigate the reversal curse when fine-tuning pretrained causal language models on new data. BICO modifies the causal attention mechanism to function bidirectionally and employs a mask denoising optimization. In the task designed to assess the reversal curse, our approach improves Llama's accuracy from the original 0% to around 70%. We hope that more attention can be focused on exploring and addressing these inherent weaknesses of the current LLMs, in order to achieve a higher level of intelligence.
The choice of hyperparameters greatly impacts performance in natural language processing. Often, it is hard to tell if a method is better than another or just better tuned. Tuning curves fix this ambiguity by accounting for tuning effort. Specifically, they plot validation performance as a function of the number of hyperparameter choices tried so far. While several estimators exist for these curves, it is common to use point estimates, which we show fail silently and give contradictory results when given too little data. Beyond point estimates, confidence bands are necessary to rigorously establish the relationship between different approaches. We present the first method to construct valid confidence bands for tuning curves. The bands are exact, simultaneous, and distribution-free, thus they provide a robust basis for comparing methods. Empirical analysis shows that while bootstrap confidence bands, which serve as a baseline, fail to approximate their target confidence, ours achieve it exactly. We validate our design with ablations, analyze the effect of sample size, and provide guidance on comparing models with our method. To promote confident comparisons in future work, we release a library implementing the method at //github.com/nalourie/opda .
The rise of large language models (LLMs) has brought a critical need for high-quality human-labeled data, particularly for processes like human feedback and evaluation. A common practice is to label data via consensus annotation over crowdworker judgments. However, annotators' judgments for subjective tasks can differ in many ways: they may have different qualitative judgments about an example, and they may map those to a labeling scheme in different ways. We show that these nuances can be captured by natural language explanations, and propose a method to rescale ordinal annotations and explanations using LLMs. Specifically, we feed annotators' Likert ratings and corresponding explanations into an LLM and prompt it to produce a numeric score anchored in a scoring rubric. These scores should reflect the annotators' underlying assessments of the example. The rubric can be designed or modified after annotation, and include distinctions that may not have been known when the original error taxonomy was devised. We explore our technique in the context of rating system outputs for a document-grounded question answering task, where LLMs achieve near-human performance. Our method rescales the raw judgments without impacting agreement and brings the scores closer to human judgments grounded in the same scoring rubric.
Transformer based language models exhibit intelligent behaviors such as understanding natural language, recognizing patterns, acquiring knowledge, reasoning, planning, reflecting and using tools. This paper explores how their underlying mechanics give rise to intelligent behaviors. Towards that end, we propose framing Transformer dynamics as movement through embedding space. Examining Transformers through this perspective reveals key insights, establishing a Theory of Transformers: 1) Intelligent behaviours map to paths in Embedding Space which, the Transformer random-walks through during inferencing. 2) LM training learns a probability distribution over all possible paths. `Intelligence' is learnt by assigning higher probabilities to paths representing intelligent behaviors. No learning can take place in-context; context only narrows the subset of paths sampled during decoding. 5) The Transformer is a self-mapping composition function, folding a context sequence into a context-vector such that it's proximity to a token-vector reflects its co-occurrence and conditioned probability. Thus, the physical arrangement of vectors in Embedding Space determines path probabilities. 6) Context vectors are composed by aggregating features of the sequence's tokens via a process we call the encoding walk. Attention contributes a - potentially redundant - association-bias to this process. 7) This process is comprised of two principal operation types: filtering (data independent) and aggregation (data dependent). This generalization unifies Transformers with other sequence models. Building upon this foundation, we formalize a popular semantic interpretation of embeddings into a ``concept-space theory'' and find some evidence of it's validity.
Force perception on medical instruments is critical for understanding the mechanism between surgical tools and tissues for feeding back quantized force information, which is essential for guidance and supervision in robotic autonomous surgery. Especially for continuous curvilinear capsulorhexis (CCC), it always lacks a force measuring method, providing a sensitive, accurate, and multi-dimensional measurement to track the intraoperative force. Furthermore, the decoupling matrix obtained from the calibration can decorrelate signals with acceptable accuracy, however, this calculating method is not a strong way for thoroughly decoupling under some sensitive measuring situations such as the CCC. In this paper, a three-dimensional force perception method on capsulorhexis forceps by installing Fiber Bragg Grating sensors (FBGs) on prongs and a signal decoupling method combined with FASTICA is first proposed to solve these problems. According to experimental results, the measuring range is up to 1 N (depending on the range of wavelength shifts of sensors) and the resolution on x, y, and z axial force is 0.5, 0.5, and 2 mN separately. To minimize the coupling effects among sensors on measuring multi-axial forces, by unitizing the particular parameter and scaling the corresponding vector in the mixing matrix and recovered signals from FastICA, the signals from sensors can be decorrelated and recovered with the errors on axial forces decreasing up to 50% least. The calibration and calculation can also be simplified with half the parameters involved in the calculation. Experiments on thin sheets and in vitro porcine eyes were performed, and it was found that the tearing forces were stable and the time sequence of tearing forceps was stationary or first-order difference stationary during roughly circular crack propagating.
Decision-making algorithms are being used in important decisions, such as who should be enrolled in health care programs and be hired. Even though these systems are currently deployed in high-stakes scenarios, many of them cannot explain their decisions. This limitation has prompted the Explainable Artificial Intelligence (XAI) initiative, which aims to make algorithms explainable to comply with legal requirements, promote trust, and maintain accountability. This paper questions whether and to what extent explainability can help solve the responsibility issues posed by autonomous AI systems. We suggest that XAI systems that provide post-hoc explanations could be seen as blameworthy agents, obscuring the responsibility of developers in the decision-making process. Furthermore, we argue that XAI could result in incorrect attributions of responsibility to vulnerable stakeholders, such as those who are subjected to algorithmic decisions (i.e., patients), due to a misguided perception that they have control over explainable algorithms. This conflict between explainability and accountability can be exacerbated if designers choose to use algorithms and patients as moral and legal scapegoats. We conclude with a set of recommendations for how to approach this tension in the socio-technical process of algorithmic decision-making and a defense of hard regulation to prevent designers from escaping responsibility.
For languages with no annotated resources, transferring knowledge from rich-resource languages is an effective solution for named entity recognition (NER). While all existing methods directly transfer from source-learned model to a target language, in this paper, we propose to fine-tune the learned model with a few similar examples given a test case, which could benefit the prediction by leveraging the structural and semantic information conveyed in such similar examples. To this end, we present a meta-learning algorithm to find a good model parameter initialization that could fast adapt to the given test case and propose to construct multiple pseudo-NER tasks for meta-training by computing sentence similarities. To further improve the model's generalization ability across different languages, we introduce a masking scheme and augment the loss function with an additional maximum term during meta-training. We conduct extensive experiments on cross-lingual named entity recognition with minimal resources over five target languages. The results show that our approach significantly outperforms existing state-of-the-art methods across the board.
We consider the problem of referring image segmentation. Given an input image and a natural language expression, the goal is to segment the object referred by the language expression in the image. Existing works in this area treat the language expression and the input image separately in their representations. They do not sufficiently capture long-range correlations between these two modalities. In this paper, we propose a cross-modal self-attention (CMSA) module that effectively captures the long-range dependencies between linguistic and visual features. Our model can adaptively focus on informative words in the referring expression and important regions in the input image. In addition, we propose a gated multi-level fusion module to selectively integrate self-attentive cross-modal features corresponding to different levels in the image. This module controls the information flow of features at different levels. We validate the proposed approach on four evaluation datasets. Our proposed approach consistently outperforms existing state-of-the-art methods.
We examine the problem of question answering over knowledge graphs, focusing on simple questions that can be answered by the lookup of a single fact. Adopting a straightforward decomposition of the problem into entity detection, entity linking, relation prediction, and evidence combination, we explore simple yet strong baselines. On the popular SimpleQuestions dataset, we find that basic LSTMs and GRUs plus a few heuristics yield accuracies that approach the state of the art, and techniques that do not use neural networks also perform reasonably well. These results show that gains from sophisticated deep learning techniques proposed in the literature are quite modest and that some previous models exhibit unnecessary complexity.
Many natural language processing tasks solely rely on sparse dependencies between a few tokens in a sentence. Soft attention mechanisms show promising performance in modeling local/global dependencies by soft probabilities between every two tokens, but they are not effective and efficient when applied to long sentences. By contrast, hard attention mechanisms directly select a subset of tokens but are difficult and inefficient to train due to their combinatorial nature. In this paper, we integrate both soft and hard attention into one context fusion model, "reinforced self-attention (ReSA)", for the mutual benefit of each other. In ReSA, a hard attention trims a sequence for a soft self-attention to process, while the soft attention feeds reward signals back to facilitate the training of the hard one. For this purpose, we develop a novel hard attention called "reinforced sequence sampling (RSS)", selecting tokens in parallel and trained via policy gradient. Using two RSS modules, ReSA efficiently extracts the sparse dependencies between each pair of selected tokens. We finally propose an RNN/CNN-free sentence-encoding model, "reinforced self-attention network (ReSAN)", solely based on ReSA. It achieves state-of-the-art performance on both Stanford Natural Language Inference (SNLI) and Sentences Involving Compositional Knowledge (SICK) datasets.