With the rapid progress of large language models (LLMs), many downstream NLP tasks can be well solved given appropriate prompts. Though model developers and researchers work hard on dialog safety to avoid generating harmful content from LLMs, it is still challenging to steer AI-generated content (AIGC) for the human good. As powerful LLMs are devouring existing text data from various domains (e.g., GPT-3 is trained on 45TB texts), it is natural to doubt whether the private information is included in the training data and what privacy threats can these LLMs and their downstream applications bring. In this paper, we study the privacy threats from OpenAI's ChatGPT and the New Bing enhanced by ChatGPT and show that application-integrated LLMs may cause new privacy threats. To this end, we conduct extensive experiments to support our claims and discuss LLMs' privacy implications.
Recent advancements in Natural Language Processing (NLP), particularly in Large Language Models (LLMs), associated with deep learning-based computer vision techniques, have shown substantial potential for automating a variety of tasks. One notable model is Visual ChatGPT, which combines ChatGPT's LLM capabilities with visual computation to enable effective image analysis. The model's ability to process images based on textual inputs can revolutionize diverse fields. However, its application in the remote sensing domain remains unexplored. This is the first paper to examine the potential of Visual ChatGPT, a cutting-edge LLM founded on the GPT architecture, to tackle the aspects of image processing related to the remote sensing domain. Among its current capabilities, Visual ChatGPT can generate textual descriptions of images, perform canny edge and straight line detection, and conduct image segmentation. These offer valuable insights into image content and facilitate the interpretation and extraction of information. By exploring the applicability of these techniques within publicly available datasets of satellite images, we demonstrate the current model's limitations in dealing with remote sensing images, highlighting its challenges and future prospects. Although still in early development, we believe that the combination of LLMs and visual models holds a significant potential to transform remote sensing image processing, creating accessible and practical application opportunities in the field.
Upon the advent of the emerging metaverse and its related applications in Augmented Reality (AR), the current bit-oriented network struggles to support real-time changes for the vast amount of associated information, hindering its development. Thus, a critical revolution in the Sixth Generation (6G) networks is envisioned through the joint exploitation of information context and its importance to the task, leading to a communication paradigm shift towards semantic and effectiveness levels. However, current research has not yet proposed any explicit and systematic communication framework for AR applications that incorporate these two levels. To fill this research gap, this paper presents a task-oriented and semantics-aware communication framework for augmented reality (TSAR) to enhance communication efficiency and effectiveness in 6G. Specifically, we first analyse the traditional wireless AR point cloud communication framework and then summarize our proposed semantic information along with the end-to-end wireless communication. We then detail the design blocks of the TSAR framework, covering both semantic and effectiveness levels. Finally, numerous experiments have been conducted to demonstrate that, compared to the traditional point cloud communication framework, our proposed TSAR significantly reduces wireless AR application transmission latency by 95.6%, while improving communication effectiveness in geometry and color aspects by up to 82.4% and 20.4%, respectively.
Undoubtedly, the evolution of Generative AI (GenAI) models has been the highlight of digital transformation in the year 2022. As the different GenAI models like ChatGPT and Google Bard continue to foster their complexity and capability, it's critical to understand its consequences from a cybersecurity perspective. Several instances recently have demonstrated the use of GenAI tools in both the defensive and offensive side of cybersecurity, and focusing on the social, ethical and privacy implications this technology possesses. This research paper highlights the limitations, challenges, potential risks, and opportunities of GenAI in the domain of cybersecurity and privacy. The work presents the vulnerabilities of ChatGPT, which can be exploited by malicious users to exfiltrate malicious information bypassing the ethical constraints on the model. This paper demonstrates successful example attacks like Jailbreaks, reverse psychology, and prompt injection attacks on the ChatGPT. The paper also investigates how cyber offenders can use the GenAI tools in developing cyber attacks, and explore the scenarios where ChatGPT can be used by adversaries to create social engineering attacks, phishing attacks, automated hacking, attack payload generation, malware creation, and polymorphic malware. This paper then examines defense techniques and uses GenAI tools to improve security measures, including cyber defense automation, reporting, threat intelligence, secure code generation and detection, attack identification, developing ethical guidelines, incidence response plans, and malware detection. We will also discuss the social, legal, and ethical implications of ChatGPT. In conclusion, the paper highlights open challenges and future directions to make this GenAI secure, safe, trustworthy, and ethical as the community understands its cybersecurity impacts.
Artificial intelligence is gaining traction in more ways than ever before. The popularity of language models and AI-based businesses has soared since ChatGPT was made available to the general public via OpenAI. It is becoming increasingly common for people to use ChatGPT both professionally and personally. Considering the widespread use of ChatGPT and the reliance people place on it, this study determined how reliable ChatGPT can be for answering complex medical and clinical questions. Harvard University gross anatomy along with the United States Medical Licensing Examination (USMLE) questionnaire were used to accomplish the objective. The paper evaluated the obtained results using a 2-way ANOVA and posthoc analysis. Both showed systematic covariation between format and prompt. Furthermore, the physician adjudicators independently rated the outcome's accuracy, concordance, and insight. As a result of the analysis, ChatGPT-generated answers were found to be more context-oriented and represented a better model for deductive reasoning than regular Google search results. Furthermore, ChatGPT obtained 58.8% on logical questions and 60% on ethical questions. This means that the ChatGPT is approaching the passing range for logical questions and has crossed the threshold for ethical questions. The paper believes ChatGPT and other language learning models can be invaluable tools for e-learners; however, the study suggests that there is still room to improve their accuracy. In order to improve ChatGPT's performance in the future, further research is needed to better understand how it can answer different types of questions.
The proliferation of deep learning applications in healthcare calls for data aggregation across various institutions, a practice often associated with significant privacy concerns. This concern intensifies in medical image analysis, where privacy-preserving mechanisms are paramount due to the data being sensitive in nature. Federated learning, which enables cooperative model training without direct data exchange, presents a promising solution. Nevertheless, the inherent vulnerabilities of federated learning necessitate further privacy safeguards. This study addresses this need by integrating differential privacy, a leading privacy-preserving technique, into a federated learning framework for medical image classification. We introduce a novel differentially private federated learning model and meticulously examine its impacts on privacy preservation and model performance. Our research confirms the existence of a trade-off between model accuracy and privacy settings. However, we demonstrate that strategic calibration of the privacy budget in differential privacy can uphold robust image classification performance while providing substantial privacy protection.
As AI-generated text increasingly resembles human-written content, the ability to detect machine-generated text becomes crucial. To address this challenge, we present GPTWatermark, a robust and high-quality solution designed to ascertain whether a piece of text originates from a specific model. Our approach extends existing watermarking strategies and employs a fixed group design to enhance robustness against editing and paraphrasing attacks. We show that our watermarked language model enjoys strong provable guarantees on generation quality, correctness in detection, and security against evasion attacks. Experimental results on various large language models (LLMs) and diverse datasets demonstrate that our method achieves superior detection accuracy and comparable generation quality in perplexity, thus promoting the responsible use of LLMs.
Analysis of innovation has been fundamentally limited by conventional approaches to broad, structural variables. This paper pushes the boundaries, taking an LLM approach to patent analysis with the groundbreaking ChatGPT technology. OpenAI's state-of-the-art textual embedding accesses complex information about the quality and impact of each invention to power deep learning predictive models. The nuanced embedding drives a 24% incremental improvement in R-squared predicting patent value and clearly isolates the worst and best applications. These models enable a revision of the contemporary Kogan, Papanikolaou, Seru, and Stoffman (2017) valuation of patents by a median deviation of 1.5 times, accounting for potential institutional predictions. Furthermore, the market fails to incorporate timely information about applications; a long-short portfolio based on predicted acceptance rates achieves significant abnormal returns of 3.3% annually. The models provide an opportunity to revolutionize startup and small-firm corporate policy vis-a-vis patenting.
With the widespread use of large artificial intelligence (AI) models such as ChatGPT, AI-generated content (AIGC) has garnered increasing attention and is leading a paradigm shift in content creation and knowledge representation. AIGC uses generative large AI algorithms to assist or replace humans in creating massive, high-quality, and human-like content at a faster pace and lower cost, based on user-provided prompts. Despite the recent significant progress in AIGC, security, privacy, ethical, and legal challenges still need to be addressed. This paper presents an in-depth survey of working principles, security and privacy threats, state-of-the-art solutions, and future challenges of the AIGC paradigm. Specifically, we first explore the enabling technologies, general architecture of AIGC, and discuss its working modes and key characteristics. Then, we investigate the taxonomy of security and privacy threats to AIGC and highlight the ethical and societal implications of GPT and AIGC technologies. Furthermore, we review the state-of-the-art AIGC watermarking approaches for regulatable AIGC paradigms regarding the AIGC model and its produced content. Finally, we identify future challenges and open research directions related to AIGC.
This paper presents a comprehensive and practical guide for practitioners and end-users working with Large Language Models (LLMs) in their downstream natural language processing (NLP) tasks. We provide discussions and insights into the usage of LLMs from the perspectives of models, data, and downstream tasks. Firstly, we offer an introduction and brief summary of current GPT- and BERT-style LLMs. Then, we discuss the influence of pre-training data, training data, and test data. Most importantly, we provide a detailed discussion about the use and non-use cases of large language models for various natural language processing tasks, such as knowledge-intensive tasks, traditional natural language understanding tasks, natural language generation tasks, emergent abilities, and considerations for specific tasks.We present various use cases and non-use cases to illustrate the practical applications and limitations of LLMs in real-world scenarios. We also try to understand the importance of data and the specific challenges associated with each NLP task. Furthermore, we explore the impact of spurious biases on LLMs and delve into other essential considerations, such as efficiency, cost, and latency, to ensure a comprehensive understanding of deploying LLMs in practice. This comprehensive guide aims to provide researchers and practitioners with valuable insights and best practices for working with LLMs, thereby enabling the successful implementation of these models in a wide range of NLP tasks. A curated list of practical guide resources of LLMs, regularly updated, can be found at \url{//github.com/Mooler0410/LLMsPracticalGuide}.
As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.