To enhance perception performance in complex and extensive scenarios within the realm of autonomous driving, there has been a noteworthy focus on temporal modeling, with a particular emphasis on streaming methods. The prevailing trend in streaming models involves the utilization of stream queries for the propagation of temporal information. Despite the prevalence of this approach, the direct application of the streaming paradigm to the construction of vectorized high-definition maps (HD-maps) fails to fully harness the inherent potential of temporal information. This paper introduces the Stream Query Denoising (SQD) strategy as a novel approach for temporal modeling in high-definition map (HD-map) construction. SQD is designed to facilitate the learning of temporal consistency among map elements within the streaming model. The methodology involves denoising the queries that have been perturbed by the addition of noise to the ground-truth information from the preceding frame. This denoising process aims to reconstruct the ground-truth information for the current frame, thereby simulating the prediction process inherent in stream queries. The SQD strategy can be applied to those streaming methods (e.g., StreamMapNet) to enhance the temporal modeling. The proposed SQD-MapNet is the StreamMapNet equipped with SQD. Extensive experiments on nuScenes and Argoverse2 show that our method is remarkably superior to other existing methods across all settings of close range and long range. The code will be available soon.
We consider a producer's problem of selling a product to a continuum of privacy-conscious consumers, where the producer can implement third-degree price discrimination, offering different prices to different market segments. In the absence of privacy constraints, Bergemann, Brooks, and Morris [2015] characterize the set of all possible consumer-producer utilities, showing that it is a triangle. We consider a privacy mechanism that provides a degree of protection by probabilistically masking each market segment, and we establish that the resultant set of all consumer-producer utilities forms a convex polygon, characterized explicitly as a linear mapping of a certain high-dimensional convex polytope into $\mathbb{R}^2$. This characterization enables us to investigate the impact of the privacy mechanism on both producer and consumer utilities. In particular, we establish that the privacy constraint always hurts the producer by reducing both the maximum and minimum utility achievable. From the consumer's perspective, although the privacy mechanism ensures an increase in the minimum utility compared to the non-private scenario, interestingly, it may reduce the maximum utility. Finally, we demonstrate that increasing the privacy level does not necessarily intensify these effects. For instance, the maximum utility for the producer or the minimum utility for the consumer may exhibit nonmonotonic behavior in response to an increase of the privacy level.
Uncertainty quantification, once a singular task, has evolved into a spectrum of tasks, including abstained prediction, out-of-distribution detection, and aleatoric uncertainty quantification. The latest goal is disentanglement: the construction of multiple estimators that are each tailored to one and only one task. Hence, there is a plethora of recent advances with different intentions - that often entirely deviate from practical behavior. This paper conducts a comprehensive evaluation of numerous uncertainty estimators across diverse tasks on ImageNet. We find that, despite promising theoretical endeavors, disentanglement is not yet achieved in practice. Additionally, we reveal which uncertainty estimators excel at which specific tasks, providing insights for practitioners and guiding future research toward task-centric and disentangled uncertainty estimation methods. Our code is available at //github.com/bmucsanyi/bud.
Monitoring concurrent programs typically rely on collecting traces to abstract program executions. However, existing approaches targeting general behavioral properties are either not tailored for online monitoring, are no longer maintained, or implement naive instrumentation that often leads to unsound verdicts. We first define the notion of when a trace is representative of a concurrent execution. We then present a non-blocking vector clock algorithm to collect sound concurrent traces on the fly reflecting the partial order between events. Moreover, concurrent events in the representative trace pose a soundness problem for monitors synthesized from total order formalisms. For this, we extract a causal dependence relation from the monitor to check if the trace has the needed orderings and define the conditions to decide at runtime when a collected trace is monitorable. We implement our contributions in a tool, FACTS, which instruments programs compiling to Java bytecode, constructs sound representative traces, and warns the monitor about non-monitorable traces. We evaluate our work and compare it with existing approaches.
Empathetic response generation is to comprehend the cognitive and emotional states in dialogue utterances and generate proper responses. Psychological theories posit that comprehending emotional and cognitive states necessitates iteratively capturing and understanding associated words across dialogue utterances. However, existing approaches regard dialogue utterances as either a long sequence or independent utterances for comprehension, which are prone to overlook the associated words between them. To address this issue, we propose an Iterative Associative Memory Model (IAMM) for empathetic response generation. Specifically, we employ a novel second-order interaction attention mechanism to iteratively capture vital associated words between dialogue utterances and situations, dialogue history, and a memory module (for storing associated words), thereby accurately and nuancedly comprehending the utterances. We conduct experiments on the Empathetic-Dialogue dataset. Both automatic and human evaluations validate the efficacy of the model. Meanwhile, variant experiments on LLMs also demonstrate that attending to associated words improves empathetic comprehension and expression.
Prediction methods for time-to-event outcomes often utilize survival models that rely on strong assumptions about noninformative censoring or on how individual-level covariates and survival functions are related. When the main interest is in predicting individual-level restricted mean survival times (RMST), reliance on such assumptions can lead to poor predictive performance if these assumptions are not satisfied. We propose a generalized Bayes framework that avoids full probability modeling of all survival outcomes by using an RMST-targeted loss function that depends on a collection of inverse probability of censoring weights (IPCW). In our generalized Bayes formulation, we utilize a flexible additive tree regression model for the RMST function, and the posterior distribution of interest is obtained through model-averaging IPCW-conditional loss function-based pseudo-Bayesian posteriors. Because informative censoring can be captured by the IPCW-dependent loss function, our approach only requires one to specify a model for the censoring distribution, thereby obviating the need for complex joint modeling to handle informative censoring. We evaluate the performance of our method through a series of simulations that compare it with several well-known survival machine learning methods, and we illustrate the application of our method using a multi-site cohort of breast cancer patients with clinical and genomic covariates.
Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.
Recently, a considerable literature has grown up around the theme of Graph Convolutional Network (GCN). How to effectively leverage the rich structural information in complex graphs, such as knowledge graphs with heterogeneous types of entities and relations, is a primary open challenge in the field. Most GCN methods are either restricted to graphs with a homogeneous type of edges (e.g., citation links only), or focusing on representation learning for nodes only instead of jointly propagating and updating the embeddings of both nodes and edges for target-driven objectives. This paper addresses these limitations by proposing a novel framework, namely the Knowledge Embedding based Graph Convolutional Network (KE-GCN), which combines the power of GCNs in graph-based belief propagation and the strengths of advanced knowledge embedding (a.k.a. knowledge graph embedding) methods, and goes beyond. Our theoretical analysis shows that KE-GCN offers an elegant unification of several well-known GCN methods as specific cases, with a new perspective of graph convolution. Experimental results on benchmark datasets show the advantageous performance of KE-GCN over strong baseline methods in the tasks of knowledge graph alignment and entity classification.
Data augmentation has been widely used to improve generalizability of machine learning models. However, comparatively little work studies data augmentation for graphs. This is largely due to the complex, non-Euclidean structure of graphs, which limits possible manipulation operations. Augmentation operations commonly used in vision and language have no analogs for graphs. Our work studies graph data augmentation for graph neural networks (GNNs) in the context of improving semi-supervised node-classification. We discuss practical and theoretical motivations, considerations and strategies for graph data augmentation. Our work shows that neural edge predictors can effectively encode class-homophilic structure to promote intra-class edges and demote inter-class edges in given graph structure, and our main contribution introduces the GAug graph data augmentation framework, which leverages these insights to improve performance in GNN-based node classification via edge prediction. Extensive experiments on multiple benchmarks show that augmentation via GAug improves performance across GNN architectures and datasets.
Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.
Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).