亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We give a simple combinatorial algorithm to deterministically approximately count the number of satisfying assignments of general constraint satisfaction problems (CSPs). Suppose that the CSP has domain size $q=O(1)$, each constraint contains at most $k=O(1)$ variables, shares variables with at most $\Delta=O(1)$ constraints, and is violated with probability at most $p$ by a uniform random assignment. The algorithm returns in polynomial time in an improved local lemma regime: \[ q^2\cdot k\cdot p\cdot\Delta^5\le C_0\quad\text{for a suitably small absolute constant }C_0. \] Here the key term $\Delta^5$ improves the previously best known $\Delta^7$ for general CSPs [JPV21b] and $\Delta^{5.714}$ for the special case of $k$-CNF [JPV21a, HSW21] . Our deterministic counting algorithm is a derandomization of the very recent fast sampling algorithm in [HWY22]. It departs substantially from all previous deterministic counting Lov\'{a}sz local lemma algorithms which relied on linear programming, and gives a deterministic approximate counting algorithm that straightforwardly derandomizes a fast sampling algorithm, hence unifying the fast sampling and deterministic approximate counting in the same algorithmic framework. To obtain the improved regime, in our analysis we develop a refinement of the $\{2,3\}$-trees that were used in the previous analyses of counting/sampling LLL. Similar techniques can be applied to the previous LP-based algorithms to obtain the same improved regime and may be of independent interests.

相關內容

We study the problem of estimating the convex hull of the image $f(X)\subset\mathbb{R}^n$ of a compact set $X\subset\mathbb{R}^m$ with smooth boundary through a smooth function $f:\mathbb{R}^m\to\mathbb{R}^n$. Assuming that $f$ is a diffeomorphism or a submersion, we derive new bounds on the Hausdorff distance between the convex hull of $f(X)$ and the convex hull of the images $f(x_i)$ of $M$ samples $x_i$ on the boundary of $X$. When applied to the problem of geometric inference from random samples, our results give tighter and more general error bounds than the state of the art. We present applications to the problems of robust optimization, of reachability analysis of dynamical systems, and of robust trajectory optimization under bounded uncertainty.

Denote by $\Delta_M$ the $M$-dimensional simplex. A map $f\colon \Delta_M\to\mathbb R^d$ is an almost $r$-embedding if $f\sigma_1\cap\ldots\cap f\sigma_r=\emptyset$ whenever $\sigma_1,\ldots,\sigma_r$ are pairwise disjoint faces. A counterexample to the topological Tverberg conjecture asserts that if $r$ is not a prime power and $d\ge2r+1$, then there is an almost $r$-embedding $\Delta_{(d+1)(r-1)}\to\mathbb R^d$. This was improved by Blagojevi\'c-Frick-Ziegler using a simple construction of higher-dimensional counterexamples by taking $k$-fold join power of lower-dimensional ones. We improve this further (for $d$ large compared to $r$): If $r$ is not a prime power and $N:=(d+1)r-r\Big\lceil\dfrac{d+2}{r+1}\Big\rceil-2$, then there is an almost $r$-embedding $\Delta_N\to\mathbb R^d$. For the $r$-fold van Kampen-Flores conjecture we also produce counterexamples which are stronger than previously known. Our proof is based on generalizations of the Mabillard-Wagner theorem on construction of almost $r$-embeddings from equivariant maps, and of the \"Ozaydin theorem on existence of equivariant maps.

The Voter model is a well-studied stochastic process that models the invasion of a novel trait $A$ (e.g., a new opinion, social meme, genetic mutation, magnetic spin) in a network of individuals (agents, people, genes, particles) carrying an existing resident trait $B$. Individuals change traits by occasionally sampling the trait of a neighbor, while an invasion bias $\delta\geq 0$ expresses the stochastic preference to adopt the novel trait $A$ over the resident trait $B$. The strength of an invasion is measured by the probability that eventually the whole population adopts trait $A$, i.e., the fixation probability. In more realistic settings, however, the invasion bias is not ubiquitous, but rather manifested only in parts of the network. For instance, when modeling the spread of a social trait, the invasion bias represents localized incentives. In this paper, we generalize the standard biased Voter model to the positional Voter model, in which the invasion bias is effectuated only on an arbitrary subset of the network nodes, called biased nodes. We study the ensuing optimization problem, which is, given a budget $k$, to choose $k$ biased nodes so as to maximize the fixation probability of a randomly occurring invasion. We show that the problem is NP-hard both for finite $\delta$ and when $\delta \rightarrow \infty$ (strong bias), while the objective function is not submodular in either setting, indicating strong computational hardness. On the other hand, we show that, when $\delta\rightarrow 0$ (weak bias), we can obtain a tight approximation in $O(n^{2\omega})$ time, where $\omega$ is the matrix-multiplication exponent. We complement our theoretical results with an experimental evaluation of some proposed heuristics.

Probabilistic programming languages (PPLs) make encoding and automatically solving statistical inference problems relatively easy by separating models from the inference algorithm. A popular choice for solving inference problems is to use Monte Carlo inference algorithms. For higher-order functional PPLs, these inference algorithms rely on execution suspension to perform inference, most often enabled through a full continuation-passing style (CPS) transformation. However, standard CPS transformations for PPL compilers introduce significant overhead, a problem the community has generally overlooked. State-of-the-art solutions either perform complete CPS transformations with performance penalties due to unnecessary closure allocations or use efficient, but complex, low-level solutions that are often not available in high-level languages. In contrast to prior work, we develop a new approach that is both efficient and easy to implement using higher-order languages. Specifically, we design a novel static suspension analysis technique that determines the parts of a program that require suspension, given a particular inference algorithm. The analysis result allows selectively CPS transforming the program only where necessary. We formally prove the correctness of the suspension analysis and implement both the suspension analysis and selective CPS transformation in the Miking CorePPL compiler. We evaluate the implementation for a large number of Monte Carlo inference algorithms on real-world models from phylogenetics, epidemiology, and topic modeling. The evaluation results demonstrate significant improvements across all models and inference algorithms.

Heged\H{u}s's lemma is the following combinatorial statement regarding polynomials over finite fields. Over a field $\mathbb{F}$ of characteristic $p > 0$ and for $q$ a power of $p$, the lemma says that any multilinear polynomial $P\in \mathbb{F}[x_1,\ldots,x_n]$ of degree less than $q$ that vanishes at all points in $\{0,1\}^n$ of some fixed Hamming weight $k\in [q,n-q]$ must also vanish at all points in $\{0,1\}^n$ of weight $k + q$. This lemma was used by Heged\H{u}s (2009) to give a solution to \emph{Galvin's problem}, an extremal problem about set systems; by Alon, Kumar and Volk (2018) to improve the best-known multilinear circuit lower bounds; and by Hrube\v{s}, Ramamoorthy, Rao and Yehudayoff (2019) to prove optimal lower bounds against depth-$2$ threshold circuits for computing some symmetric functions. In this paper, we formulate a robust version of Heged\H{u}s's lemma. Informally, this version says that if a polynomial of degree $o(q)$ vanishes at most points of weight $k$, then it vanishes at many points of weight $k+q$. We prove this lemma and give three different applications.

Given a set of points $P$ and a set of regions $\mathcal{O}$, an incidence is a pair $(p,o ) \in P \times \mathcal{O}$ such that $p \in o$. We obtain a number of new results on a classical question in combinatorial geometry: What is the number of incidences (under certain restrictive conditions)? We prove a bound of $O\bigl( k n(\log n/\log\log n)^{d-1} \bigr)$ on the number of incidences between $n$ points and $n$ axis-parallel boxes in $\mathbb{R}^d$, if no $k$ boxes contain $k$ common points, that is, if the incidence graph between the points and the boxes does not contain $K_{k,k}$ as a subgraph. This new bound improves over previous work, by Basit, Chernikov, Starchenko, Tao, and Tran (2021), by more than a factor of $\log^d n$ for $d >2$. Furthermore, it matches a lower bound implied by the work of Chazelle (1990), for $k=2$, thus settling the question for points and boxes. We also study several other variants of the problem. For halfspaces, using shallow cuttings, we get a linear bound in two and three dimensions. We also present linear (or near linear) bounds for shapes with low union complexity, such as pseudodisks and fat triangles.

This work considers the low-rank approximation of a matrix $A(t)$ depending on a parameter $t$ in a compact set $D \subset \mathbb{R}^d$. Application areas that give rise to such problems include computational statistics and dynamical systems. Randomized algorithms are an increasingly popular approach for performing low-rank approximation and they usually proceed by multiplying the matrix with random dimension reduction matrices (DRMs). Applying such algorithms directly to $A(t)$ would involve different, independent DRMs for every $t$, which is not only expensive but also leads to inherently non-smooth approximations. In this work, we propose to use constant DRMs, that is, $A(t)$ is multiplied with the same DRM for every $t$. The resulting parameter-dependent extensions of two popular randomized algorithms, the randomized singular value decomposition and the generalized Nystr\"{o}m method, are computationally attractive, especially when $A(t)$ admits an affine linear decomposition with respect to $t$. We perform a probabilistic analysis for both algorithms, deriving bounds on the expected value as well as failure probabilities for the $L^2$ approximation error when using Gaussian random DRMs. Both, the theoretical results and numerical experiments, show that the use of constant DRMs does not impair their effectiveness; our methods reliably return quasi-best low-rank approximations.

The non-greedy algorithm for $L_1$-norm PCA proposed in \cite{nie2011robust} is revisited and its convergence properties are studied. The algorithm is first interpreted as a conditional subgradient or an alternating maximization method. By treating it as a conditional subgradient, the iterative points generated by the algorithm will not change in finitely many steps under a certain full-rank assumption; such an assumption can be removed when the projection dimension is one. By treating the algorithm as an alternating maximization, it is proved that the objective value will not change after at most $\left\lceil \frac{F^{\max}}{\tau_0} \right\rceil$ steps. The stopping point satisfies certain optimality conditions. Then, a variant algorithm with improved convergence properties is studied. The iterative points generated by the algorithm will not change after at most $\left\lceil \frac{2F^{\max}}{\tau} \right\rceil$ steps and the stopping point also satisfies certain optimality conditions given a small enough $\tau$. Similar finite-step convergence is also established for a slight modification of the PAMe proposed in \cite{wang2021linear} very recently under a full-rank assumption. Such an assumption can also be removed when the projection dimension is one.

Classical graphical modeling of multivariate random vectors uses graphs to encode conditional independence. In graphical modeling of multivariate stochastic processes, graphs may encode so-called local independence analogously. If some coordinate processes of the multivariate stochastic process are unobserved, the local independence graph of the observed coordinate processes is a directed mixed graph (DMG). Two DMGs may encode the same local independences in which case we say that they are Markov equivalent. Markov equivalence is a central notion in graphical modeling. We show that deciding Markov equivalence of DMGs is coNP-complete, even under a sparsity assumption. As a remedy, we introduce a collection of equivalence relations on DMGs that are all less granular than Markov equivalence and we say that they are weak equivalence relations. This leads to feasible algorithms for naturally occurring computational problems related to weak equivalence of DMGs. The equivalence classes of a weak equivalence relation have attractive properties. In particular, each equivalence class has a greatest element which leads to a concise representation of an equivalence class. Moreover, these equivalence relations define a hierarchy of granularity in the graphical modeling which leads to simple and interpretable connections between equivalence relations corresponding to different levels of granularity.

In this paper, we provide near-optimal accelerated first-order methods for minimizing a broad class of smooth nonconvex functions that are strictly unimodal on all lines through a minimizer. This function class, which we call the class of smooth quasar-convex functions, is parameterized by a constant $\gamma \in (0,1]$, where $\gamma = 1$ encompasses the classes of smooth convex and star-convex functions, and smaller values of $\gamma$ indicate that the function can be "more nonconvex." We develop a variant of accelerated gradient descent that computes an $\epsilon$-approximate minimizer of a smooth $\gamma$-quasar-convex function with at most $O(\gamma^{-1} \epsilon^{-1/2} \log(\gamma^{-1} \epsilon^{-1}))$ total function and gradient evaluations. We also derive a lower bound of $\Omega(\gamma^{-1} \epsilon^{-1/2})$ on the worst-case number of gradient evaluations required by any deterministic first-order method, showing that, up to a logarithmic factor, no deterministic first-order method can improve upon ours.

北京阿比特科技有限公司