Behavior Tree (BT) planning is crucial for autonomous robot behavior control, yet its application in complex scenarios is hampered by long planning times. Pruning and heuristics are common techniques to accelerate planning, but it is difficult to design general pruning strategies and heuristic functions for BT planning problems. This paper proposes improving BT planning efficiency for everyday service robots leveraging commonsense reasoning provided by Large Language Models (LLMs), leading to model-free pre-planning action space pruning and heuristic generation. This approach takes advantage of the modularity and interpretability of BT nodes, represented by predicate logic, to enable LLMs to predict the task-relevant action predicates and objects, and even the optimal path, without an explicit action model. We propose the Heuristic Optimal Behavior Tree Expansion Algorithm (HOBTEA) with two heuristic variants and provide a formal comparison and discussion of their efficiency and optimality. We introduce a learnable and transferable commonsense library to enhance the LLM's reasoning performance without fine-tuning. The action space expansion based on the commonsense library can further increase the success rate of planning. Experiments show the theoretical bounds of commonsense pruning and heuristic, and demonstrate the actual performance of LLM learning and reasoning with the commonsense library. Results in four datasets showcase the practical effectiveness of our approach in everyday service robot applications.
Modern applications are increasingly driven by Machine Learning (ML) models whose non-deterministic behavior is affecting the entire application life cycle from design to operation. The pervasive adoption of ML is urgently calling for approaches that guarantee a stable non-functional behavior of ML-based applications over time and across model changes. To this aim, non-functional properties of ML models, such as privacy, confidentiality, fairness, and explainability, must be monitored, verified, and maintained. Existing approaches mostly focus on i) implementing solutions for classifier selection according to the functional behavior of ML models, ii) finding new algorithmic solutions, such as continuous re-training. In this paper, we propose a multi-model approach that aims to guarantee a stable non-functional behavior of ML-based applications. An architectural and methodological approach is provided to compare multiple ML models showing similar non-functional properties and select the model supporting stable non-functional behavior over time according to (dynamic and unpredictable) contextual changes. Our approach goes beyond the state of the art by providing a solution that continuously guarantees a stable non-functional behavior of ML-based applications, is ML algorithm-agnostic, and is driven by non-functional properties assessed on the ML models themselves. It consists of a two-step process working during application operation, where model assessment verifies non-functional properties of ML models trained and selected at development time, and model substitution guarantees continuous and stable support of non-functional properties. We experimentally evaluate our solution in a real-world scenario focusing on non-functional property fairness.
Multi-Access Edge Computing (MEC) is widely recognized as an essential enabler for applications that necessitate minimal latency. However, the dropped task ratio metric has not been studied thoroughly in literature. Neglecting this metric can potentially reduce the system's capability to effectively manage tasks, leading to an increase in the number of eliminated or unprocessed tasks. This paper presents a 5G-MEC task offloading scenario with a focus on minimizing the dropped task ratio, computational latency, and communication latency. We employ Mixed Integer Linear Programming (MILP), Particle Swarm Optimization (PSO), and Genetic Algorithm (GA) to optimize the latency and dropped task ratio. We conduct an analysis on how the quantity of tasks and User Equipment (UE) impacts the ratio of dropped tasks and the latency. The tasks that are generated by UEs are classified into two categories: urgent tasks and non-urgent tasks. The UEs with urgent tasks are prioritized in processing to ensure a zero-dropped task ratio. Our proposed method improves the performance of the baseline methods, First Come First Serve (FCFS) and Shortest Task First (STF), in the context of 5G-MEC task offloading. Under the MILP-based approach, the latency is reduced by approximately 55% compared to GA and 35% compared to PSO. The dropped task ratio under the MILP-based approach is reduced by approximately 70% compared to GA and by 40% compared to PSO.
Offline Reinforcement Learning (ORL) offers a robust solution to training agents in applications where interactions with the environment must be strictly limited due to cost, safety, or lack of accurate simulation environments. Despite its potential to facilitate deployment of artificial agents in the real world, Offline Reinforcement Learning typically requires very many demonstrations annotated with ground-truth rewards. Consequently, state-of-the-art ORL algorithms can be difficult or impossible to apply in data-scarce scenarios. In this paper we propose a simple but effective Reward Model that can estimate the reward signal from a very limited sample of environment transitions annotated with rewards. Once the reward signal is modeled, we use the Reward Model to impute rewards for a large sample of reward-free transitions, thus enabling the application of ORL techniques. We demonstrate the potential of our approach on several D4RL continuous locomotion tasks. Our results show that, using only 1\% of reward-labeled transitions from the original datasets, our learned reward model is able to impute rewards for the remaining 99\% of the transitions, from which performant agents can be learned using Offline Reinforcement Learning.
Multi-robot planning and coordination in uncertain environments is a fundamental computational challenge, since the belief space increases exponentially with the number of robots. In this paper, we address the problem of planning in uncertain environments with a heterogeneous robot team comprised of fast scout vehicles for information gathering and more risk-averse carrier robots from which the scout vehicles are deployed. To overcome the computational challenges associated with multi-robot motion planning in the presence of environmental uncertainty, we represent the environment and operational scenario using a topological graph, where the edge weight distributions vary with the state of the robot team on the graph. While this belief space representation still scales exponentially with the number of robots, we formulate a computationally efficient mixed-integer program which is capable of generating optimal multi-robot plans in seconds. We evaluate our approach in a representative scenario where the robot team must move through an environment while minimizing detection by observers in positions that are uncertain to the robot team. We demonstrate that our approach is sufficiently computationally tractable for real-time re-planning in changing environments, can improve performance in the presence of imperfect information, and can be adjusted to accommodate different risk profiles.
Recent advances in Deep Neural Networks (DNNs) and sensor technologies are enabling autonomous driving systems (ADSs) with an ever-increasing level of autonomy. However, assessing their dependability remains a critical concern. State-of-the-art ADS testing approaches modify the controllable attributes of a simulated driving environment until the ADS misbehaves. In such approaches, environment instances in which the ADS is successful are discarded, despite the possibility that they could contain hidden driving conditions in which the ADS may misbehave. In this paper, we present GENBO (GENerator of BOundary state pairs), a novel test generator for ADS testing. GENBO mutates the driving conditions of the ego vehicle (position, velocity and orientation), collected in a failure-free environment instance, and efficiently generates challenging driving conditions at the behavior boundary (i.e., where the model starts to misbehave) in the same environment instance. We use such boundary conditions to augment the initial training dataset and retrain the DNN model under test. Our evaluation results show that the retrained model has, on average, up to 3x higher success rate on a separate set of evaluation tracks with respect to the original DNN model.
Understanding the molecules and their textual descriptions via molecule language models (MoLM) recently got a surge of interest among researchers. However, unique challenges exist in the field of MoLM due to 1) a limited amount of molecule-text paired data and 2) missing expertise that occurred due to the specialized areas of focus among the experts. To this end, we propose AMOLE, which 1) augments molecule-text pairs with structural similarity preserving loss, and 2) transfers the expertise between the molecules. Extensive experiments on various downstream tasks demonstrate the superiority of AMOLE in comprehending molecules and their descriptions, highlighting its potential for application in real-world drug discovery.
Spotforming is a target-speaker extraction technique that uses multiple microphone arrays. This method applies beamforming (BF) to each microphone array, and the common components among the BF outputs are estimated as the target source. This study proposes a new common component extraction method based on nonnegative tensor factorization (NTF) for higher model interpretability and more robust spotforming against hyperparameters. Moreover, attractor-based regularization was introduced to facilitate the automatic selection of optimal target bases in the NTF. Experimental results show that the proposed method performs better than conventional methods in spotforming performance and also shows some characteristics suitable for practical use.
Molecular design and synthesis planning are two critical steps in the process of molecular discovery that we propose to formulate as a single shared task of conditional synthetic pathway generation. We report an amortized approach to generate synthetic pathways as a Markov decision process conditioned on a target molecular embedding. This approach allows us to conduct synthesis planning in a bottom-up manner and design synthesizable molecules by decoding from optimized conditional codes, demonstrating the potential to solve both problems of design and synthesis simultaneously. The approach leverages neural networks to probabilistically model the synthetic trees, one reaction step at a time, according to reactivity rules encoded in a discrete action space of reaction templates. We train these networks on hundreds of thousands of artificial pathways generated from a pool of purchasable compounds and a list of expert-curated templates. We validate our method with (a) the recovery of molecules using conditional generation, (b) the identification of synthesizable structural analogs, and (c) the optimization of molecular structures given oracle functions relevant to drug discovery.
Pre-trained deep neural network language models such as ELMo, GPT, BERT and XLNet have recently achieved state-of-the-art performance on a variety of language understanding tasks. However, their size makes them impractical for a number of scenarios, especially on mobile and edge devices. In particular, the input word embedding matrix accounts for a significant proportion of the model's memory footprint, due to the large input vocabulary and embedding dimensions. Knowledge distillation techniques have had success at compressing large neural network models, but they are ineffective at yielding student models with vocabularies different from the original teacher models. We introduce a novel knowledge distillation technique for training a student model with a significantly smaller vocabulary as well as lower embedding and hidden state dimensions. Specifically, we employ a dual-training mechanism that trains the teacher and student models simultaneously to obtain optimal word embeddings for the student vocabulary. We combine this approach with learning shared projection matrices that transfer layer-wise knowledge from the teacher model to the student model. Our method is able to compress the BERT_BASE model by more than 60x, with only a minor drop in downstream task metrics, resulting in a language model with a footprint of under 7MB. Experimental results also demonstrate higher compression efficiency and accuracy when compared with other state-of-the-art compression techniques.
Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.