Many practically relevant robot grasping problems feature a target object for which all grasps are occluded, e.g., by the environment. Single-shot grasp planning invariably fails in such scenarios. Instead, it is necessary to first manipulate the object into a configuration that affords a grasp. We solve this problem by learning a sequence of actions that utilize the environment to change the object's pose. Concretely, we employ hierarchical reinforcement learning to combine a sequence of learned parameterized manipulation primitives. By learning the low-level manipulation policies, our approach can control the object's state through exploiting interactions between the object, the gripper, and the environment. Designing such a complex behavior analytically would be infeasible under uncontrolled conditions, as an analytic approach requires accurate physical modeling of the interaction and contact dynamics. In contrast, we learn a hierarchical policy model that operates directly on depth perception data, without the need for object detection, pose estimation, or manual design of controllers. We evaluate our approach on picking box-shaped objects of various weight, shape, and friction properties from a constrained table-top workspace. Our method transfers to a real robot and is able to successfully complete the object picking task in 98\% of experimental trials.
Coalitions naturally exist in many real-world systems involving multiple decision makers such as ridesharing, security, and online ad auctions, but the coalition structure among the agents is often unknown. We propose and study an important yet previously overseen problem -- Coalition Structure Learning (CSL), where we aim to carefully design a series of games for the agents and infer the underlying coalition structure by observing their interactions in those games. We establish a lower bound on the sample complexity -- defined as the number of games needed to learn the structure -- of any algorithms for CSL and propose the Iterative Grouping (IG) algorithm for designing normal-form games to achieve the lower bound. We show that IG can be extended to other succinct games such as congestion games and graphical games. Moreover, we solve CSL in a more restrictive and practical setting: auctions. We show a variant of IG to solve CSL in the auction setting even if we cannot design the bidder valuations. Finally, we conduct experiments to evaluate IG in the auction setting and the results align with our theoretical analysis.
Neural networks with self-attention (a.k.a. Transformers) like ViT and Swin have emerged as a better alternative to traditional convolutional neural networks (CNNs). However, our understanding of how the new architecture works is still limited. In this paper, we focus on the phenomenon that Transformers show higher robustness against corruptions than CNNs, while not being overconfident. This is contrary to the intuition that robustness increases with confidence. We resolve this contradiction by empirically investigating how the output of the penultimate layer moves in the representation space as the input data moves linearly within a small area. In particular, we show the following. (1) While CNNs exhibit fairly linear relationship between the input and output movements, Transformers show nonlinear relationship for some data. For those data, the output of Transformers moves in a curved trajectory as the input moves linearly. (2) When a data is located in a curved region, it is hard to move it out of the decision region since the output moves along a curved trajectory instead of a straight line to the decision boundary, resulting in high robustness of Transformers. (3) If a data is slightly modified to jump out of the curved region, the movements afterwards become linear and the output goes to the decision boundary directly. In other words, there does exist a decision boundary near the data, which is hard to find only because of the curved representation space. This explains the underconfident prediction of Transformers. Also, we examine mathematical properties of the attention operation that induce nonlinear response to linear perturbation. Finally, we share our additional findings, regarding what contributes to the curved representation space of Transformers, and how the curvedness evolves during training.
A growing body of research on probabilistic programs and causal models has highlighted the need to reason compositionally about model classes that extend directed graphical models. Both probabilistic programs and causal models define a joint probability density over a set of random variables, and exhibit sparse structure that can be used to reason about causation and conditional independence. This work builds on recent work on Markov categories of probabilistic mappings to define a category whose morphisms combine a joint density, factorized over each sample space, with a deterministic mapping from samples to return values. This is a step towards closing the gap between recent category-theoretic descriptions of probability measures, and the operational definitions of factorized densities that are commonly employed in probabilistic programming and causal inference.
Allowing a compromised device to receive privacy-sensitive sensor readings, or to operate a safety-critical actuator, carries significant risk. Usually, such risks are mitigated by validating the device's security state with remote attestation, but current remote attestation protocols are not suitable when the beneficiary of attestation, the relying party, is a constrained device such as a small sensor or actuator. These devices typically lack the power and memory to operate public-key cryptography needed by such protocols, and may only be able to communicate with devices in their physical proximity, such as with the controller whose security state they wish to evaluate. In this paper, we present a remote platform attestation protocol suitable for relying parties that are limited to symmetric-key cryptography and a single communication channel. We show that our protocol, including the needed cryptography and message processing, can be implemented with a code size of 6 KB and validate its security via model checking with the ProVerif tool.
Operational consistent query answering (CQA) is a recent framework for CQA based on revised definitions of repairs, which are built by applying a sequence of operations (e.g., fact deletions) starting from an inconsistent database until we reach a database that is consistent w.r.t. the given set of constraints. It has been recently shown that there are efficient approximations for computing the percentage of repairs, as well as of sequences of operations leading to repairs, that entail a given query when we focus on primary keys, conjunctive queries, and assuming the query is fixed (i.e., in data complexity). However, it has been left open whether such approximations exist when the query is part of the input (i.e., in combined complexity). We show that this is the case when we focus on self-join-free conjunctive queries of bounded generelized hypertreewidth. We also show that it is unlikely that efficient approximation schemes exist once we give up one of the adopted syntactic restrictions, i.e., self-join-freeness or bounding the generelized hypertreewidth. Towards the desired approximation schemes, we introduce a novel counting complexity class, called SpanTL, show that each problem in SpanTL admits an efficient approximation scheme by using a recent approximability result in the context of tree automata, and then place the problems of interest in SpanTL.
Graph Neural Networks (GNNs), which generalize deep neural networks to graph-structured data, have drawn considerable attention and achieved state-of-the-art performance in numerous graph related tasks. However, existing GNN models mainly focus on designing graph convolution operations. The graph pooling (or downsampling) operations, that play an important role in learning hierarchical representations, are usually overlooked. In this paper, we propose a novel graph pooling operator, called Hierarchical Graph Pooling with Structure Learning (HGP-SL), which can be integrated into various graph neural network architectures. HGP-SL incorporates graph pooling and structure learning into a unified module to generate hierarchical representations of graphs. More specifically, the graph pooling operation adaptively selects a subset of nodes to form an induced subgraph for the subsequent layers. To preserve the integrity of graph's topological information, we further introduce a structure learning mechanism to learn a refined graph structure for the pooled graph at each layer. By combining HGP-SL operator with graph neural networks, we perform graph level representation learning with focus on graph classification task. Experimental results on six widely used benchmarks demonstrate the effectiveness of our proposed model.
Recently, graph neural networks (GNNs) have revolutionized the field of graph representation learning through effectively learned node embeddings, and achieved state-of-the-art results in tasks such as node classification and link prediction. However, current GNN methods are inherently flat and do not learn hierarchical representations of graphs---a limitation that is especially problematic for the task of graph classification, where the goal is to predict the label associated with an entire graph. Here we propose DiffPool, a differentiable graph pooling module that can generate hierarchical representations of graphs and can be combined with various graph neural network architectures in an end-to-end fashion. DiffPool learns a differentiable soft cluster assignment for nodes at each layer of a deep GNN, mapping nodes to a set of clusters, which then form the coarsened input for the next GNN layer. Our experimental results show that combining existing GNN methods with DiffPool yields an average improvement of 5-10% accuracy on graph classification benchmarks, compared to all existing pooling approaches, achieving a new state-of-the-art on four out of five benchmark data sets.
Aspect based sentiment analysis (ABSA) can provide more detailed information than general sentiment analysis, because it aims to predict the sentiment polarities of the given aspects or entities in text. We summarize previous approaches into two subtasks: aspect-category sentiment analysis (ACSA) and aspect-term sentiment analysis (ATSA). Most previous approaches employ long short-term memory and attention mechanisms to predict the sentiment polarity of the concerned targets, which are often complicated and need more training time. We propose a model based on convolutional neural networks and gating mechanisms, which is more accurate and efficient. First, the novel Gated Tanh-ReLU Units can selectively output the sentiment features according to the given aspect or entity. The architecture is much simpler than attention layer used in the existing models. Second, the computations of our model could be easily parallelized during training, because convolutional layers do not have time dependency as in LSTM layers, and gating units also work independently. The experiments on SemEval datasets demonstrate the efficiency and effectiveness of our models.
We propose a new method for event extraction (EE) task based on an imitation learning framework, specifically, inverse reinforcement learning (IRL) via generative adversarial network (GAN). The GAN estimates proper rewards according to the difference between the actions committed by the expert (or ground truth) and the agent among complicated states in the environment. EE task benefits from these dynamic rewards because instances and labels yield to various extents of difficulty and the gains are expected to be diverse -- e.g., an ambiguous but correctly detected trigger or argument should receive high gains -- while the traditional RL models usually neglect such differences and pay equal attention on all instances. Moreover, our experiments also demonstrate that the proposed framework outperforms state-of-the-art methods, without explicit feature engineering.
Deep neural networks (DNNs) have been found to be vulnerable to adversarial examples resulting from adding small-magnitude perturbations to inputs. Such adversarial examples can mislead DNNs to produce adversary-selected results. Different attack strategies have been proposed to generate adversarial examples, but how to produce them with high perceptual quality and more efficiently requires more research efforts. In this paper, we propose AdvGAN to generate adversarial examples with generative adversarial networks (GANs), which can learn and approximate the distribution of original instances. For AdvGAN, once the generator is trained, it can generate adversarial perturbations efficiently for any instance, so as to potentially accelerate adversarial training as defenses. We apply AdvGAN in both semi-whitebox and black-box attack settings. In semi-whitebox attacks, there is no need to access the original target model after the generator is trained, in contrast to traditional white-box attacks. In black-box attacks, we dynamically train a distilled model for the black-box model and optimize the generator accordingly. Adversarial examples generated by AdvGAN on different target models have high attack success rate under state-of-the-art defenses compared to other attacks. Our attack has placed the first with 92.76% accuracy on a public MNIST black-box attack challenge.