亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Simulating fluid dynamics is crucial for the design and development process, ranging from simple valves to complex turbomachinery. Accurately solving the underlying physical equations is computationally expensive. Therefore, learning-based solvers that model interactions on meshes have gained interest due to their promising speed-ups. However, it is unknown to what extent these models truly understand the underlying physical principles and can generalize rather than interpolate. Generalization is a key requirement for a general-purpose fluid simulator, which should adapt to different topologies, resolutions, or thermodynamic ranges. We propose SURF, a benchmark designed to test the $\textit{generalization}$ of learned graph-based fluid simulators. SURF comprises individual datasets and provides specific performance and generalization metrics for evaluating and comparing different models. We empirically demonstrate the applicability of SURF by thoroughly investigating the two state-of-the-art graph-based models, yielding new insights into their generalization.

相關內容

The autoregressive moving average (ARMA) model is a classical, and arguably one of the most studied approaches to model time series data. It has compelling theoretical properties and is widely used among practitioners. More recent deep learning approaches popularize recurrent neural networks (RNNs) and, in particular, Long Short-Term Memory (LSTM) cells that have become one of the best performing and most common building blocks in neural time series modeling. While advantageous for time series data or sequences with long-term effects, complex RNN cells are not always a must and can sometimes even be inferior to simpler recurrent approaches. In this work, we introduce the ARMA cell, a simpler, modular, and effective approach for time series modeling in neural networks. This cell can be used in any neural network architecture where recurrent structures are present and naturally handles multivariate time series using vector autoregression. We also introduce the ConvARMA cell as a natural successor for spatially-correlated time series. Our experiments show that the proposed methodology is competitive with popular alternatives in terms of performance while being more robust and compelling due to its simplicity

Error correction techniques have been used to refine the output sentences from automatic speech recognition (ASR) models and achieve a lower word error rate (WER). Previous works usually adopt end-to-end models and has strong dependency on Pseudo Paired Data and Original Paired Data. But when only pre-training on Pseudo Paired Data, previous models have negative effect on correction. While fine-tuning on Original Paired Data, the source side data must be transcribed by a well-trained ASR model, which takes a lot of time and not universal. In this paper, we propose UCorrect, an unsupervised Detector-Generator-Selector framework for ASR Error Correction. UCorrect has no dependency on the training data mentioned before. The whole procedure is first to detect whether the character is erroneous, then to generate some candidate characters and finally to select the most confident one to replace the error character. Experiments on the public AISHELL-1 dataset and WenetSpeech dataset show the effectiveness of UCorrect for ASR error correction: 1) it achieves significant WER reduction, achieves 6.83\% even without fine-tuning and 14.29\% after fine-tuning; 2) it outperforms the popular NAR correction models by a large margin with a competitive low latency; and 3) it is an universal method, as it reduces all WERs of the ASR model with different decoding strategies and reduces all WERs of ASR models trained on different scale datasets.

We introduce a novel method that combines differential geometry, kernels smoothing, and spectral analysis to quantify facial muscle activity from widely accessible video recordings, such as those captured on personal smartphones. Our approach emphasizes practicality and accessibility. It has significant potential for applications in national security and plastic surgery. Additionally, it offers remote diagnosis and monitoring for medical conditions such as stroke, Bell's palsy, and acoustic neuroma. Moreover, it is adept at detecting and classifying emotions, from the overt to the subtle. The proposed face muscle analysis technique is an explainable alternative to deep learning methods and a non-invasive substitute to facial electromyography (fEMG).

Feature extraction and matching are the basic parts of many robotic vision tasks, such as 2D or 3D object detection, recognition, and registration. As is known, 2D feature extraction and matching have already achieved great success. Unfortunately, in the field of 3D, the current methods may fail to support the extensive application of 3D LiDAR sensors in robotic vision tasks due to their poor descriptiveness and inefficiency. To address this limitation, we propose a novel 3D feature representation method: Linear Keypoints representation for 3D LiDAR point cloud, called LinK3D. The novelty of LinK3D lies in that it fully considers the characteristics (such as the sparsity and complexity) of LiDAR point clouds and represents the keypoint with its robust neighbor keypoints, which provide strong constraints in the description of the keypoint. The proposed LinK3D has been evaluated on three public datasets, and the experimental results show that our method achieves great matching performance. More importantly, LinK3D also shows excellent real-time performance, faster than the sensor frame rate at 10 Hz of a typical rotating LiDAR sensor. LinK3D only takes an average of 30 milliseconds to extract features from the point cloud collected by a 64-beam LiDAR and takes merely about 20 milliseconds to match two LiDAR scans when executed on a computer with an Intel Core i7 processor. Moreover, our method can be extended to LiDAR odometry task, and shows good scalability. We release the implementation of our method at //github.com/YungeCui/LinK3D.

Natural language processing models are vulnerable to adversarial examples. Previous textual adversarial attacks adopt gradients or confidence scores to calculate word importance ranking and generate adversarial examples. However, this information is unavailable in the real world. Therefore, we focus on a more realistic and challenging setting, named hard-label attack, in which the attacker can only query the model and obtain a discrete prediction label. Existing hard-label attack algorithms tend to initialize adversarial examples by random substitution and then utilize complex heuristic algorithms to optimize the adversarial perturbation. These methods require a lot of model queries and the attack success rate is restricted by adversary initialization. In this paper, we propose a novel hard-label attack algorithm named LimeAttack, which leverages a local explainable method to approximate word importance ranking, and then adopts beam search to find the optimal solution. Extensive experiments show that LimeAttack achieves the better attacking performance compared with existing hard-label attack under the same query budget. In addition, we evaluate the effectiveness of LimeAttack on large language models, and results indicate that adversarial examples remain a significant threat to large language models. The adversarial examples crafted by LimeAttack are highly transferable and effectively improve model robustness in adversarial training.

Deep learning-based methods have been extensively explored for automatic building mapping from high-resolution remote sensing images over recent years. While most building mapping models produce vector polygons of buildings for geographic and mapping systems, dominant methods typically decompose polygonal building extraction in some sub-problems, including segmentation, polygonization, and regularization, leading to complex inference procedures, low accuracy, and poor generalization. In this paper, we propose a simple and novel building mapping method with Hierarchical Transformers, called HiT, improving polygonal building mapping quality from high-resolution remote sensing images. HiT builds on a two-stage detection architecture by adding a polygon head parallel to classification and bounding box regression heads. HiT simultaneously outputs building bounding boxes and vector polygons, which is fully end-to-end trainable. The polygon head formulates a building polygon as serialized vertices with the bidirectional characteristic, a simple and elegant polygon representation avoiding the start or end vertex hypothesis. Under this new perspective, the polygon head adopts a transformer encoder-decoder architecture to predict serialized vertices supervised by the designed bidirectional polygon loss. Furthermore, a hierarchical attention mechanism combined with convolution operation is introduced in the encoder of the polygon head, providing more geometric structures of building polygons at vertex and edge levels. Comprehensive experiments on two benchmarks (the CrowdAI and Inria datasets) demonstrate that our method achieves a new state-of-the-art in terms of instance segmentation and polygonal metrics compared with state-of-the-art methods. Moreover, qualitative results verify the superiority and effectiveness of our model under complex scenes.

Diffusion models have found valuable applications in anomaly detection by capturing the nominal data distribution and identifying anomalies via reconstruction. Despite their merits, they struggle to localize anomalies of varying scales, especially larger anomalies like entire missing components. Addressing this, we present a novel framework that enhances the capability of diffusion models, by extending the previous introduced implicit conditioning approach Meng et al. (2022) in three significant ways. First, we incorporate a dynamic step size computation that allows for variable noising steps in the forward process guided by an initial anomaly prediction. Second, we demonstrate that denoising an only scaled input, without any added noise, outperforms conventional denoising process. Third, we project images in a latent space to abstract away from fine details that interfere with reconstruction of large missing components. Additionally, we propose a fine-tuning mechanism that facilitates the model to effectively grasp the nuances of the target domain. Our method undergoes rigorous evaluation on two prominent anomaly detection datasets VISA and BTAD, yielding state-of-the-art performance. Importantly, our framework effectively localizes anomalies regardless of their scale, marking a pivotal advancement in diffusion-based anomaly detection.

Transformer architectures have facilitated the development of large-scale and general-purpose sequence models for prediction tasks in natural language processing and computer vision, e.g., GPT-3 and Swin Transformer. Although originally designed for prediction problems, it is natural to inquire about their suitability for sequential decision-making and reinforcement learning problems, which are typically beset by long-standing issues involving sample efficiency, credit assignment, and partial observability. In recent years, sequence models, especially the Transformer, have attracted increasing interest in the RL communities, spawning numerous approaches with notable effectiveness and generalizability. This survey presents a comprehensive overview of recent works aimed at solving sequential decision-making tasks with sequence models such as the Transformer, by discussing the connection between sequential decision-making and sequence modeling, and categorizing them based on the way they utilize the Transformer. Moreover, this paper puts forth various potential avenues for future research intending to improve the effectiveness of large sequence models for sequential decision-making, encompassing theoretical foundations, network architectures, algorithms, and efficient training systems. As this article has been accepted by the Frontiers of Computer Science, here is an early version, and the most up-to-date version can be found at //journal.hep.com.cn/fcs/EN/10.1007/s11704-023-2689-5

The design of deep graph models still remains to be investigated and the crucial part is how to explore and exploit the knowledge from different hops of neighbors in an efficient way. In this paper, we propose a novel RNN-like deep graph neural network architecture by incorporating AdaBoost into the computation of network; and the proposed graph convolutional network called AdaGCN~(AdaBoosting Graph Convolutional Network) has the ability to efficiently extract knowledge from high-order neighbors and integrate knowledge from different hops of neighbors into the network in an AdaBoost way. We also present the architectural difference between AdaGCN and existing graph convolutional methods to show the benefits of our proposal. Finally, extensive experiments demonstrate the state-of-the-art prediction performance and the computational advantage of our approach AdaGCN.

With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and achieves state-of-the-art results on 18 tasks including question answering, natural language inference, sentiment analysis, and document ranking.

北京阿比特科技有限公司