亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Industrial Time-Sensitive Networking (TSN) provides deterministic mechanisms for real-time and reliable flow transmission. Increasing attention has been paid to efficient scheduling for time-sensitive flows with stringent requirements such as ultra-low latency and jitter. In TSN, the fine-grained traffic shaping protocol, cyclic queuing and forwarding (CQF), eliminates uncertain delay and frame loss by cyclic traffic forwarding and queuing. However, it inevitably causes high scheduling complexity. Moreover, complexity is quite sensitive to flow attributes and network scale. The problem stems in part from the lack of an attribute mining mechanism in existing frame-based scheduling. For time-critical industrial networks with large-scale complex flows, a so-called hyper-flow graph based scheduling scheme is proposed to improve the scheduling scalability in terms of schedulability, scheduling efficiency and latency & jitter. The hyper-flow graph is built by aggregating similar flow sets as hyper-flow nodes and designing a hierarchical scheduling framework. The flow attribute-sensitive scheduling information is embedded into the condensed maximal cliques, and reverse maps them precisely to congestion flow portions for re-scheduling. Its parallel scheduling reduces network scale induced complexity. Further, this scheme is designed in its entirety as a comprehensive scheduling algorithm GH^2. It improves the three criteria of scalability along a Pareto front. Extensive simulation studies demonstrate its superiority. Notably, GH^2 is verified its scheduling stability with a runtime of less than 100 ms for 1000 flows and near 1/430 of the SOTA FITS method for 2000 flows.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

Understanding the complex mechanisms of the brain can be unraveled by extracting the Dynamic Effective Connectome (DEC). Recently, score-based Directed Acyclic Graph (DAG) discovery methods have shown significant improvements in extracting the causal structure and inferring effective connectivity. However, learning DEC through these methods still faces two main challenges: one with the fundamental impotence of high-dimensional dynamic DAG discovery methods and the other with the low quality of fMRI data. In this paper, we introduce Bayesian Dynamic DAG learning with M-matrices Acyclicity characterization \textbf{(BDyMA)} method to address the challenges in discovering DEC. The presented dynamic causal model enables us to discover bidirected edges as well. Leveraging an unconstrained framework in the BDyMA method leads to more accurate results in detecting high-dimensional networks, achieving sparser outcomes, making it particularly suitable for extracting DEC. Additionally, the score function of the BDyMA method allows the incorporation of prior knowledge into the process of dynamic causal discovery which further enhances the accuracy of results. Comprehensive simulations on synthetic data and experiments on Human Connectome Project (HCP) data demonstrate that our method can handle both of the two main challenges, yielding more accurate and reliable DEC compared to state-of-the-art and baseline methods. Additionally, we investigate the trustworthiness of DTI data as prior knowledge for DEC discovery and show the improvements in DEC discovery when the DTI data is incorporated into the process.

Denoising Diffusion Probabilistic Models (DDPMs) provide the foundation for the recent breakthroughs in generative modeling. Their Markovian structure makes it difficult to define DDPMs with distributions other than Gaussian or discrete. In this paper, we introduce Star-Shaped DDPM (SS-DDPM). Its star-shaped diffusion process allows us to bypass the need to define the transition probabilities or compute posteriors. We establish duality between star-shaped and specific Markovian diffusions for the exponential family of distributions and derive efficient algorithms for training and sampling from SS-DDPMs. In the case of Gaussian distributions, SS-DDPM is equivalent to DDPM. However, SS-DDPMs provide a simple recipe for designing diffusion models with distributions such as Beta, von Mises$\unicode{x2013}$Fisher, Dirichlet, Wishart and others, which can be especially useful when data lies on a constrained manifold. We evaluate the model in different settings and find it competitive even on image data, where Beta SS-DDPM achieves results comparable to a Gaussian DDPM. Our implementation is available at //github.com/andrey-okhotin/star-shaped .

We study the tradeoff between consistency and robustness in the context of a single-trajectory time-varying Markov Decision Process (MDP) with untrusted machine-learned advice. Our work departs from the typical approach of treating advice as coming from black-box sources by instead considering a setting where additional information about how the advice is generated is available. We prove a first-of-its-kind consistency and robustness tradeoff given Q-value advice under a general MDP model that includes both continuous and discrete state/action spaces. Our results highlight that utilizing Q-value advice enables dynamic pursuit of the better of machine-learned advice and a robust baseline, thus result in near-optimal performance guarantees, which provably improves what can be obtained solely with black-box advice.

Visual Relation Extraction (VRE) is a powerful means of discovering relationships between entities within visually-rich documents. Existing methods often focus on manipulating entity features to find pairwise relations, yet neglect the more fundamental structural information that links disparate entity pairs together. The absence of global structure information may make the model struggle to learn long-range relations and easily predict conflicted results. To alleviate such limitations, we propose a \textbf{G}l\textbf{O}bal \textbf{S}tructure knowledge-guided relation \textbf{E}xtraction (\textbf{\model}) framework. {\model} initiates by generating preliminary relation predictions on entity pairs extracted from a scanned image of the document. Subsequently, global structural knowledge is captured from the preceding iterative predictions, which are then incorporated into the representations of the entities. This ``generate-capture-incorporate'' cycle is repeated multiple times, allowing entity representations and global structure knowledge to be mutually reinforced. Extensive experiments validate that {\model} not only outperforms existing methods in the standard fine-tuning setting but also reveals superior cross-lingual learning capabilities; indeed, even yields stronger data-efficient performance in the low-resource setting. The code for GOSE will be available at //github.com/chenxn2020/GOSE.

Owing to the recent developments in Generative Artificial Intelligence (GenAI) and Large Language Models (LLM), conversational agents are becoming increasingly popular and accepted. They provide a human touch by interacting in ways familiar to us and by providing support as virtual companions. Therefore, it is important to understand the user's emotions in order to respond considerately. Compared to the standard problem of emotion recognition, conversational agents face an additional constraint in that recognition must be real-time. Studies on model architectures using audio, visual, and textual modalities have mainly focused on emotion classification using full video sequences that do not provide online features. In this work, we present a novel paradigm for contextualized Emotion Recognition using Graph Convolutional Network with Reinforcement Learning (conER-GRL). Conversations are partitioned into smaller groups of utterances for effective extraction of contextual information. The system uses Gated Recurrent Units (GRU) to extract multimodal features from these groups of utterances. More importantly, Graph Convolutional Networks (GCN) and Reinforcement Learning (RL) agents are cascade trained to capture the complex dependencies of emotion features in interactive scenarios. Comparing the results of the conER-GRL model with other state-of-the-art models on the benchmark dataset IEMOCAP demonstrates the advantageous capabilities of the conER-GRL architecture in recognizing emotions in real-time from multimodal conversational signals.

Recent artificial intelligence (AI) systems have reached milestones in "grand challenges" ranging from Go to protein-folding. The capability to retrieve medical knowledge, reason over it, and answer medical questions comparably to physicians has long been viewed as one such grand challenge. Large language models (LLMs) have catalyzed significant progress in medical question answering; Med-PaLM was the first model to exceed a "passing" score in US Medical Licensing Examination (USMLE) style questions with a score of 67.2% on the MedQA dataset. However, this and other prior work suggested significant room for improvement, especially when models' answers were compared to clinicians' answers. Here we present Med-PaLM 2, which bridges these gaps by leveraging a combination of base LLM improvements (PaLM 2), medical domain finetuning, and prompting strategies including a novel ensemble refinement approach. Med-PaLM 2 scored up to 86.5% on the MedQA dataset, improving upon Med-PaLM by over 19% and setting a new state-of-the-art. We also observed performance approaching or exceeding state-of-the-art across MedMCQA, PubMedQA, and MMLU clinical topics datasets. We performed detailed human evaluations on long-form questions along multiple axes relevant to clinical applications. In pairwise comparative ranking of 1066 consumer medical questions, physicians preferred Med-PaLM 2 answers to those produced by physicians on eight of nine axes pertaining to clinical utility (p < 0.001). We also observed significant improvements compared to Med-PaLM on every evaluation axis (p < 0.001) on newly introduced datasets of 240 long-form "adversarial" questions to probe LLM limitations. While further studies are necessary to validate the efficacy of these models in real-world settings, these results highlight rapid progress towards physician-level performance in medical question answering.

Text Classification is the most essential and fundamental problem in Natural Language Processing. While numerous recent text classification models applied the sequential deep learning technique, graph neural network-based models can directly deal with complex structured text data and exploit global information. Many real text classification applications can be naturally cast into a graph, which captures words, documents, and corpus global features. In this survey, we bring the coverage of methods up to 2023, including corpus-level and document-level graph neural networks. We discuss each of these methods in detail, dealing with the graph construction mechanisms and the graph-based learning process. As well as the technological survey, we look at issues behind and future directions addressed in text classification using graph neural networks. We also cover datasets, evaluation metrics, and experiment design and present a summary of published performance on the publicly available benchmarks. Note that we present a comprehensive comparison between different techniques and identify the pros and cons of various evaluation metrics in this survey.

Natural Language Processing (NLP) has been revolutionized by the use of Pre-trained Language Models (PLMs) such as BERT. Despite setting new records in nearly every NLP task, PLMs still face a number of challenges including poor interpretability, weak reasoning capability, and the need for a lot of expensive annotated data when applied to downstream tasks. By integrating external knowledge into PLMs, \textit{\underline{K}nowledge-\underline{E}nhanced \underline{P}re-trained \underline{L}anguage \underline{M}odels} (KEPLMs) have the potential to overcome the above-mentioned limitations. In this paper, we examine KEPLMs systematically through a series of studies. Specifically, we outline the common types and different formats of knowledge to be integrated into KEPLMs, detail the existing methods for building and evaluating KEPLMS, present the applications of KEPLMs in downstream tasks, and discuss the future research directions. Researchers will benefit from this survey by gaining a quick and comprehensive overview of the latest developments in this field.

Graph Neural Networks (GNNs) have been shown to be effective models for different predictive tasks on graph-structured data. Recent work on their expressive power has focused on isomorphism tasks and countable feature spaces. We extend this theoretical framework to include continuous features - which occur regularly in real-world input domains and within the hidden layers of GNNs - and we demonstrate the requirement for multiple aggregation functions in this context. Accordingly, we propose Principal Neighbourhood Aggregation (PNA), a novel architecture combining multiple aggregators with degree-scalers (which generalize the sum aggregator). Finally, we compare the capacity of different models to capture and exploit the graph structure via a novel benchmark containing multiple tasks taken from classical graph theory, alongside existing benchmarks from real-world domains, all of which demonstrate the strength of our model. With this work, we hope to steer some of the GNN research towards new aggregation methods which we believe are essential in the search for powerful and robust models.

Bidirectional Encoder Representations from Transformers (BERT) has shown marvelous improvements across various NLP tasks. Recently, an upgraded version of BERT has been released with Whole Word Masking (WWM), which mitigate the drawbacks of masking partial WordPiece tokens in pre-training BERT. In this technical report, we adapt whole word masking in Chinese text, that masking the whole word instead of masking Chinese characters, which could bring another challenge in Masked Language Model (MLM) pre-training task. The model was trained on the latest Chinese Wikipedia dump. We aim to provide easy extensibility and better performance for Chinese BERT without changing any neural architecture or even hyper-parameters. The model is verified on various NLP tasks, across sentence-level to document-level, including sentiment classification (ChnSentiCorp, Sina Weibo), named entity recognition (People Daily, MSRA-NER), natural language inference (XNLI), sentence pair matching (LCQMC, BQ Corpus), and machine reading comprehension (CMRC 2018, DRCD, CAIL RC). Experimental results on these datasets show that the whole word masking could bring another significant gain. Moreover, we also examine the effectiveness of Chinese pre-trained models: BERT, ERNIE, BERT-wwm. We release the pre-trained model (both TensorFlow and PyTorch) on GitHub: //github.com/ymcui/Chinese-BERT-wwm

北京阿比特科技有限公司