亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Fine-grained information on translation errors is helpful for the translation evaluation community. Existing approaches can not synchronously consider error position and type, failing to integrate the error information of both. In this paper, we propose Fine-Grained Translation Error Detection (FG-TED) task, aiming at identifying both the position and the type of translation errors on given source-hypothesis sentence pairs. Besides, we build an FG-TED model to predict the \textbf{addition} and \textbf{omission} errors -- two typical translation accuracy errors. First, we use a word-level classification paradigm to form our model and use the shortcut learning reduction to relieve the influence of monolingual features. Besides, we construct synthetic datasets for model training, and relieve the disagreement of data labeling in authoritative datasets, making the experimental benchmark concordant. Experiments show that our model can identify both error type and position concurrently, and gives state-of-the-art results on the restored dataset. Our model also delivers more reliable predictions on low-resource and transfer scenarios than existing baselines. The related datasets and the source code will be released in the future.

相關內容

Large language models (LLMs) are competitive with the state of the art on a wide range of sentence-level translation datasets. However, their ability to translate paragraphs and documents remains unexplored because evaluation in these settings is costly and difficult. We show through a rigorous human evaluation that asking the Gpt-3.5 (text-davinci-003) LLM to translate an entire literary paragraph (e.g., from a novel) at once results in higher-quality translations than standard sentence-by-sentence translation across 18 linguistically-diverse language pairs (e.g., translating into and out of Japanese, Polish, and English). Our evaluation, which took approximately 350 hours of effort for annotation and analysis, is conducted by hiring translators fluent in both the source and target language and asking them to provide both span-level error annotations as well as preference judgments of which system's translations are better. We observe that discourse-level LLM translators commit fewer mistranslations, grammar errors, and stylistic inconsistencies than sentence-level approaches. With that said, critical errors still abound, including occasional content omissions, and a human translator's intervention remains necessary to ensure that the author's voice remains intact. We publicly release our dataset and error annotations to spur future research on evaluation of document-level literary translation.

For many business applications that require the processing, indexing, and retrieval of professional documents such as legal briefs (in PDF format etc.), it is often essential to classify the pages of any given document into their corresponding types beforehand. Most existing studies in the field of document image classification either focus on single-page documents or treat multiple pages in a document independently. Although in recent years a few techniques have been proposed to exploit the context information from neighboring pages to enhance document page classification, they typically cannot be utilized with large pre-trained language models due to the constraint on input length. In this paper, we present a simple but effective approach that overcomes the above limitation. Specifically, we enhance the input with extra tokens carrying sequential information about previous pages - introducing recurrence - which enables the usage of pre-trained Transformer models like BERT for context-aware page classification. Our experiments conducted on two legal datasets in English and Portuguese respectively show that the proposed approach can significantly improve the performance of document page classification compared to the non-recurrent setup as well as the other context-aware baselines.

Probabilities of Causation play a fundamental role in decision making in law, health care and public policy. Nevertheless, their point identification is challenging, requiring strong assumptions such as monotonicity. In the absence of such assumptions, existing work requires multiple observations of datasets that contain the same treatment and outcome variables, in order to establish bounds on these probabilities. However, in many clinical trials and public policy evaluation cases, there exist independent datasets that examine the effect of a different treatment each on the same outcome variable. Here, we outline how to significantly tighten existing bounds on the probabilities of causation, by imposing counterfactual consistency between SCMs constructed from such independent datasets ('causal marginal problem'). Next, we describe a new information theoretic approach on falsification of counterfactual probabilities, using conditional mutual information to quantify counterfactual influence. The latter generalises to arbitrary discrete variables and number of treatments, and renders the causal marginal problem more interpretable. Since the question of 'tight enough' is left to the user, we provide an additional method of inference when the bounds are unsatisfactory: A maximum entropy based method that defines a metric for the space of plausible SCMs and proposes the entropy maximising SCM for inferring counterfactuals in the absence of more information.

Current research on hate speech analysis is typically oriented towards monolingual and single classification tasks. In this paper, we present a new multilingual hate speech analysis dataset for English, Hindi, Arabic, French, German and Spanish languages for multiple domains across hate speech - Abuse, Racism, Sexism, Religious Hate and Extremism. To the best of our knowledge, this paper is the first to address the problem of identifying various types of hate speech in these five wide domains in these six languages. In this work, we describe how we created the dataset, created annotations at high level and low level for different domains and how we use it to test the current state-of-the-art multilingual and multitask learning approaches. We evaluate our dataset in various monolingual, cross-lingual and machine translation classification settings and compare it against open source English datasets that we aggregated and merged for this task. Then we discuss how this approach can be used to create large scale hate-speech datasets and how to leverage our annotations in order to improve hate speech detection and classification in general.

Document-level relation extraction (DocRE) predicts relations for entity pairs that rely on long-range context-dependent reasoning in a document. As a typical multi-label classification problem, DocRE faces the challenge of effectively distinguishing a small set of positive relations from the majority of negative ones. This challenge becomes even more difficult to overcome when there exists a significant number of annotation errors in the dataset. In this work, we aim to achieve better integration of both the discriminability and robustness for the DocRE problem. Specifically, we first design an effective loss function to endow high discriminability to both probabilistic outputs and internal representations. We innovatively customize entropy minimization and supervised contrastive learning for the challenging multi-label and long-tailed learning problems. To ameliorate the impact of label errors, we equipped our method with a novel negative label sampling strategy to strengthen the model robustness. In addition, we introduce two new data regimes to mimic more realistic scenarios with annotation errors and evaluate our sampling strategy. Experimental results verify the effectiveness of each component and show that our method achieves new state-of-the-art results on the DocRED dataset, its recently cleaned version, Re-DocRED, and the proposed data regimes.

Appropriate reviewer assignment significantly impacts the quality of proposal evaluation, as accurate and fair reviews are contingent on their assignment to relevant reviewers. The crucial task of assigning reviewers to submitted proposals is the starting point of the review process and is also known as the reviewer assignment problem (RAP). Due to the obvious restrictions of manual assignment, journal editors, conference organizers, and grant managers demand automatic reviewer assignment approaches. Many studies have proposed assignment solutions in response to the demand for automated procedures since 1992. The primary objective of this survey paper is to provide scholars and practitioners with a comprehensive overview of available research on the RAP. To achieve this goal, this article presents an in-depth systematic review of 103 publications in the field of reviewer assignment published in the past three decades and available in the Web of Science, Scopus, ScienceDirect, Google Scholar, and Semantic Scholar databases. This review paper classified and discussed the RAP approaches into two broad categories and numerous subcategories based on their underlying techniques. Furthermore, potential future research directions for each category are presented. This survey shows that the research on the RAP is becoming more significant and that more effort is required to develop new approaches and a framework.

Medical Visual Question Answering (VQA) is a combination of medical artificial intelligence and popular VQA challenges. Given a medical image and a clinically relevant question in natural language, the medical VQA system is expected to predict a plausible and convincing answer. Although the general-domain VQA has been extensively studied, the medical VQA still needs specific investigation and exploration due to its task features. In the first part of this survey, we cover and discuss the publicly available medical VQA datasets up to date about the data source, data quantity, and task feature. In the second part, we review the approaches used in medical VQA tasks. In the last part, we analyze some medical-specific challenges for the field and discuss future research directions.

With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.

Image-to-image translation aims to learn the mapping between two visual domains. There are two main challenges for many applications: 1) the lack of aligned training pairs and 2) multiple possible outputs from a single input image. In this work, we present an approach based on disentangled representation for producing diverse outputs without paired training images. To achieve diversity, we propose to embed images onto two spaces: a domain-invariant content space capturing shared information across domains and a domain-specific attribute space. Our model takes the encoded content features extracted from a given input and the attribute vectors sampled from the attribute space to produce diverse outputs at test time. To handle unpaired training data, we introduce a novel cross-cycle consistency loss based on disentangled representations. Qualitative results show that our model can generate diverse and realistic images on a wide range of tasks without paired training data. For quantitative comparisons, we measure realism with user study and diversity with a perceptual distance metric. We apply the proposed model to domain adaptation and show competitive performance when compared to the state-of-the-art on the MNIST-M and the LineMod datasets.

Multi-view networks are ubiquitous in real-world applications. In order to extract knowledge or business value, it is of interest to transform such networks into representations that are easily machine-actionable. Meanwhile, network embedding has emerged as an effective approach to generate distributed network representations. Therefore, we are motivated to study the problem of multi-view network embedding, with a focus on the characteristics that are specific and important in embedding this type of networks. In our practice of embedding real-world multi-view networks, we identify two such characteristics, which we refer to as preservation and collaboration. We then explore the feasibility of achieving better embedding quality by simultaneously modeling preservation and collaboration, and propose the mvn2vec algorithms. With experiments on a series of synthetic datasets, an internal Snapchat dataset, and two public datasets, we further confirm the presence and importance of preservation and collaboration. These experiments also demonstrate that better embedding can be obtained by simultaneously modeling the two characteristics, while not over-complicating the model or requiring additional supervision.

北京阿比特科技有限公司