In this paper, we propose an opportunistic user scheduling scheme in a multi-user reconfigurable intelligent surface (RIS) aided wireless system to improve secrecy. We derive the secrecy outage probability (SOP) and its asymptotic expression in approximate closed form. The asymptotic analysis shows that the SOP does not depend on the transmitter-to-RIS distance and saturates to a fixed value depending on the ratio of the path loss of the RIS-to-destination and RIS-to-eavesdropper links and the number of users at high signal-to-noise ratio. It is shown that increasing the number of RIS elements leads to an exponential decrease in the SOP. We also compare our scheme with that of a non-orthogonal multiple access (NOMA) scheduling scheme, which chooses a pair of users to schedule in each time slot. The comparison shows that the SOP of all of the NOMA users is compromised, and that our proposed scheduling scheme has better performance.
Robust, reliable, and deterministic networks are essential for a variety of applications. In order to provide guaranteed communication network services, Time-Sensitive Networking (TSN) unites a set of standards for time-synchronization, flow control, enhanced reliability, and management. We design the TSN-FlexTest testbed with generic commodity hardware and open-source software components to enable flexible TSN measurements. We have conducted extensive measurements to validate the TSN-FlexTest testbed and to examine TSN characteristics. The measurements provide insights into the effects of TSN configurations, such as increasing the number of synchronization messages for the Precision Time Protocol, indicating that a measurement accuracy of 15 ns can be achieved. The TSN measurements included extensive evaluations of the Time-aware Shaper (TAS) for sets of Tactile Internet (TI) packet traffic streams. The measurements elucidate the effects of different scheduling and shaping approaches, while revealing the need for pervasive network control that synchronizes the sending nodes with the network switches. We present the first measurements of distributed TAS with synchronized senders on a commodity hardware testbed, demonstrating the same Quality-of-Service as with dedicated wires for high-priority TI streams despite a 200% over-saturation cross traffic load. The testbed is provided as an open-source project to facilitate future TSN research.
Time-Sensitive Networking (TSN) has been recognized as one of the key enabling technologies for Industry 4.0 and has been deployed in many time- and mission-critical industrial applications, e.g., automotive and aerospace systems. Given the stringent real-time communication requirements raised by these applications, the Time-Aware Shaper (TAS) draws special attention among the many traffic shapers developed for TSN, due to its ability to achieve deterministic latency guarantees. Extensive efforts on the designs of scheduling methods for TAS shapers have been reported in recent years to improve the system schedulability, each with their own distinct focuses and concerns. However, these scheduling methods have yet to be thoroughly evaluated, especially through experimental comparisons, to provide a systematical understanding on their performance using different evaluation metrics in various application scenarios. In this paper, we fill this gap by presenting a comprehensive experimental study on the existing TAS-based scheduling methods for TSN. We first categorize the system models employed in these work along with their formulated problems, and outline the fundamental considerations in the designs of TAS-based scheduling methods. We then perform extensive evaluation on 16 representative solutions and compare their performance under both synthetic scenarios and real-life industrial use cases. Through these experimental studies, we identify the limitations of individual scheduling methods and highlight several important findings. This work will provide foundational knowledge for the future studies on TSN real-time scheduling problems, and serve as the performance benchmarking for scheduling method development in TSN.
Reconfigurable intelligent surface (RIS) is a promising technology that can reshape the electromagnetic environment in wireless networks, offering various possibilities for enhancing wireless channels. Motivated by this, we investigate the channel optimization for multiple-input multiple-output (MIMO) systems assisted by RIS. In this paper, an efficient RIS optimization method is proposed to enhance the effective rank of the MIMO channel for achievable rate improvement. Numerical results are presented to verify the effectiveness of RIS in improving MIMO channels. Additionally, we construct a 2$\times$2 RIS-assisted MIMO prototype to perform experimental measurements and validate the performance of our proposed algorithm. The results reveal a significant increase in effective rank and achievable rate for the RIS-assisted MIMO channel compared to the MIMO channel without RIS.
Simultaneously transmitting and reflecting reconfigurable intelligent surfaces (STAR-RISs) is a promising passive device that contributes to a full-space coverage via transmitting and reflecting the incident signal simultaneously. As a new paradigm in wireless communications, how to analyze the coverage and capacity performance of STAR-RISs becomes essential but challenging. To solve the coverage and capacity optimization (CCO) problem in STAR-RIS assisted networks, a multi-objective proximal policy optimization (MO-PPO) algorithm is proposed to handle long-term benefits than conventional optimization algorithms. To strike a balance between each objective, the MO-PPO algorithm provides a set of optimal solutions to form a Pareto front (PF), where any solution on the PF is regarded as an optimal result. Moreover, in order to improve the performance of the MO-PPO algorithm, two update strategies, i.e., action-value-based update strategy (AVUS) and loss function-based update strategy (LFUS), are investigated. For the AVUS, the improved point is to integrate the action values of both coverage and capacity and then update the loss function. For the LFUS, the improved point is only to assign dynamic weights for both loss functions of coverage and capacity, while the weights are calculated by a min-norm solver at every update. The numerical results demonstrated that the investigated update strategies outperform the fixed weights MO optimization algorithms in different cases, which includes a different number of sample grids, the number of STAR-RISs, the number of elements in the STAR-RISs, and the size of STAR-RISs. Additionally, the STAR-RIS assisted networks achieve better performance than conventional wireless networks without STAR-RISs. Moreover, with the same bandwidth, millimeter wave is able to provide higher capacity than sub-6 GHz, but at a cost of smaller coverage.
Reconfigurable intelligent surface (RIS) is regarded as an important enabling technology for the sixth-generation (6G) network. Recently, modulating information in reflection patterns of RIS, referred to as reflection modulation (RM), has been proven in theory to have the potential of achieving higher transmission rate than existing passive beamforming (PBF) schemes of RIS. To fully unlock this potential of RM, we propose a novel superimposed RIS-phase modulation (SRPM) scheme for multiple-input multiple-output (MIMO) systems, where tunable phase offsets are superimposed onto predetermined RIS phases to bear extra information messages. The proposed SRPM establishes a universal framework for RM, which retrieves various existing RM-based schemes as special cases. Moreover, the advantages and applicability of the SRPM in practice is also validated in theory by analytical characterization of its performance in terms of average bit error rate (ABER) and ergodic capacity. To maximize the performance gain, we formulate a general precoding optimization at the base station (BS) for a single-stream case with uncorrelated channels and obtain the optimal SRPM design via the semidefinite relaxation (SDR) technique. Furthermore, to avoid extremely high complexity in maximum likelihood (ML) detection for the SRPM, we propose a sphere decoding (SD)-based layered detection method with near-ML performance and much lower complexity. Numerical results demonstrate the effectiveness of SRPM, precoding optimization, and detection design. It is verified that the proposed SRPM achieves a higher diversity order than that of existing RM-based schemes and outperforms PBF significantly especially when the transmitter is equipped with limited radio-frequency (RF) chains.
In the literature, the reliability analysis of one-shot devices is found under accelerated life testing in the presence of various stress factors. The application of one-shot devices can be extended to the bio-medical field, where we often evidence that inflicted with a certain disease, survival time would be under different stress factors like environmental stress, co-morbidity, the severity of disease etc. This work is concerned with a one-shot device data analysis and applies it to SEER Gallbladder cancer data. The two-parameter logistic exponential distribution is applied as a lifetime distribution. For robust parameter estimation, weighted minimum density power divergence estimators (WMDPDE) is obtained along with the conventional maximum likelihood estimators (MLE). The asymptotic behaviour of the WMDPDE and the robust test statistic based on the density power divergence measure are also studied. The performances of estimators are evaluated through extensive simulation experiments. Later those developments are applied to SEER Gallbladder cancer data. Citing the importance of knowing exactly when to inspect the one-shot devices put to the test, a search for optimum inspection times is performed. This optimization is designed to minimize a defined cost function which strikes a trade-off between the precision of the estimation and experimental cost. The search is accomplished through the population-based heuristic optimization method Genetic Algorithm.
In this paper, we investigate the coexistence of a single cell massive MIMO communication system with a MIMO radar. We consider the case where the massive MIMO BS is aware of the radar's existence and treats it as a non-serviced user, but the radar is unaware of the communication system's existence and treats the signals transmitted by both the BS and the communication users as noise. Using results from random matrix theory, we derive the rates achievable by the communication system and the radar. We then use these expressions to obtain the achievable rate regions for the proposed joint radar and communications system. We observe that due to the availability of a large number of degrees of freedom at the mMIMO BS, results in minimal interference even without co-design. Finally we corroborate our findings via detailed numerical simulations and verify the validity of the results derived previously under different settings.
Uncertainty in timing information pertaining to the start time of microphone recordings and sources' emission time pose significant challenges in various applications, such as joint microphones and sources localization. Traditional optimization methods, which directly estimate this unknown timing information (UTIm), often fall short compared to approaches exploiting the low-rank property (LRP). LRP encompasses an additional low-rank structure, facilitating a linear constraint on UTIm to help formulate related low-rank structure information. This method allows us to attain globally optimal solutions for UTIm, given proper initialization. However, the initialization process often involves randomness, leading to suboptimal, local minimum values. This paper presents a novel, combined low-rank approximation (CLRA) method designed to mitigate the effects of this random initialization. We introduce three new LRP variants, underpinned by mathematical proof, which allow the UTIm to draw on a richer pool of low-rank structural information. Utilizing this augmented low-rank structural information from both LRP and the proposed variants, we formulate four linear constraints on the UTIm. Employing the proposed CLRA algorithm, we derive global optimal solutions for the UTIm via these four linear constraints.Experimental results highlight the superior performance of our method over existing state-of-the-art approaches, measured in terms of both the recovery number and reduced estimation errors of UTIm.
Maritime activities represent a major domain of economic growth with several emerging maritime Internet of Things use cases, such as smart ports, autonomous navigation, and ocean monitoring systems. The major enabler for this exciting ecosystem is the provision of broadband, low-delay, and reliable wireless coverage to the ever-increasing number of vessels, buoys, platforms, sensors, and actuators. Towards this end, the integration of unmanned aerial vehicles (UAVs) in maritime communications introduces an aerial dimension to wireless connectivity going above and beyond current deployments, which are mainly relying on shore-based base stations with limited coverage and satellite links with high latency. Considering the potential of UAV-aided wireless communications, this survey presents the state-of-the-art in UAV-aided maritime communications, which, in general, are based on both conventional optimization and machine-learning-aided approaches. More specifically, relevant UAV-based network architectures are discussed together with the role of their building blocks. Then, physical-layer, resource management, and cloud/edge computing and caching UAV-aided solutions in maritime environments are discussed and grouped based on their performance targets. Moreover, as UAVs are characterized by flexible deployment with high re-positioning capabilities, studies on UAV trajectory optimization for maritime applications are thoroughly discussed. In addition, aiming at shedding light on the current status of real-world deployments, experimental studies on UAV-aided maritime communications are presented and implementation details are given. Finally, several important open issues in the area of UAV-aided maritime communications are given, related to the integration of sixth generation (6G) advancements.
When is heterogeneity in the composition of an autonomous robotic team beneficial and when is it detrimental? We investigate and answer this question in the context of a minimally viable model that examines the role of heterogeneous speeds in perimeter defense problems, where defenders share a total allocated speed budget. We consider two distinct problem settings and develop strategies based on dynamic programming and on local interaction rules. We present a theoretical analysis of both approaches and our results are extensively validated using simulations. Interestingly, our results demonstrate that the viability of heterogeneous teams depends on the amount of information available to the defenders. Moreover, our results suggest a universality property: across a wide range of problem parameters the optimal ratio of the speeds of the defenders remains nearly constant.