Several physical problems modeled by second-order partial differential equations can be efficiently solved using mixed finite elements of the Raviart-Thomas family for N-simplexes, introduced in the seventies. In case Neumann conditions are prescribed on a curvilinear boundary, the normal component of the flux variable should preferably not take up values at nodes shifted to the boundary of the approximating polytope in the corresponding normal direction. This is because the method's accuracy downgrades, which was shown in \cite{FBRT}. In that work an order-preserving technique was studied, based on a parametric version of these elements with curved simplexes. In this paper an alternative with straight-edged triangles for two-dimensional problems is proposed. The key point of this method is a Petrov-Galerkin formulation of the mixed problem, in which the test-flux space is a little different from the shape-flux space. After carrying out a well-posedness and stability analysis, error estimates of optimal order are proven.
Superpositions of plane waves are known to approximate well the solutions of the Helmholtz equation. Their use in discretizations is typical of Trefftz methods for Helmholtz problems, aiming to achieve high accuracy with a small number of degrees of freedom. However, Trefftz methods lead to ill-conditioned linear systems, and it is often impossible to obtain the desired accuracy in floating-point arithmetic. In this paper we show that a judicious choice of plane waves can ensure high-accuracy solutions in a numerically stable way, in spite of having to solve such ill-conditioned systems. Numerical accuracy of plane wave methods is linked not only to the approximation space, but also to the size of the coefficients in the plane wave expansion. We show that the use of plane waves can lead to exponentially large coefficients, regardless of the orientations and the number of plane waves, and this causes numerical instability. We prove that all Helmholtz fields are continuous superposition of evanescent plane waves, i.e., plane waves with complex propagation vectors associated with exponential decay, and show that this leads to bounded representations. We provide a constructive scheme to select a set of real and complex-valued propagation vectors numerically. This results in an explicit selection of plane waves and an associated Trefftz method that achieves accuracy and stability. The theoretical analysis is provided for a two-dimensional domain with circular shape. However, the principles are general and we conclude the paper with a numerical experiment demonstrating practical applicability also for polygonal domains.
We consider geometric numerical integration algorithms for differential equations evolving on symmetric spaces. The integrators are constructed from canonical operations on the symmetric space, its Lie triple system (LTS), and the exponential from the LTS to the symmetric space. Examples of symmetric spaces are n-spheres and Grassmann manifolds, the space of positive definite symmetric matrices, Lie groups with a symmetric product, and elliptic and hyperbolic spaces with constant sectional curvatures. We illustrate the abstract algorithm with concrete examples. In particular for the n-sphere and the n-dimensional hyperbolic space the resulting algorithms are very simple and cost only O(n) operations per step.
We consider the solution to the biharmonic equation in mixed form discretized by the Hybrid High-Order (HHO) methods. The two resulting second-order elliptic problems can be decoupled via the introduction of a new unknown, corresponding to the boundary value of the solution of the first Laplacian problem. This technique yields a global linear problem that can be solved iteratively via a Krylov-type method. More precisely, at each iteration of the scheme, two second-order elliptic problems have to be solved, and a normal derivative on the boundary has to be computed. In this work, we specialize this scheme for the HHO discretization. To this aim, an explicit technique to compute the discrete normal derivative of an HHO solution of a Laplacian problem is proposed. Moreover, we show that the resulting discrete scheme is well-posed. Finally, a new preconditioner is designed to speed up the convergence of the Krylov method. Numerical experiments assessing the performance of the proposed iterative algorithm on both two- and three-dimensional test cases are presented.
We establish optimal error bounds on time-splitting methods for the nonlinear Schr\"odinger equation with low regularity potential and typical power-type nonlinearity $ f(\rho) = \rho^\sigma $, where $ \rho:=|\psi|^2 $ is the density with $ \psi $ the wave function and $ \sigma > 0 $ the exponent of the nonlinearity. For the first-order Lie-Trotter time-splitting method, optimal $ L^2 $-norm error bound is proved for $L^\infty$-potential and $ \sigma > 0 $, and optimal $H^1$-norm error bound is obtained for $ W^{1, 4} $-potential and $ \sigma \geq 1/2 $. For the second-order Strang time-splitting method, optimal $ L^2 $-norm error bound is established for $H^2$-potential and $ \sigma \geq 1 $, and optimal $H^1$-norm error bound is proved for $H^3$-potential and $ \sigma \geq 3/2 $. Compared to those error estimates of time-splitting methods in the literature, our optimal error bounds either improve the convergence rates under the same regularity assumptions or significantly relax the regularity requirements on potential and nonlinearity for optimal convergence orders. A key ingredient in our proof is to adopt a new technique called \textit{regularity compensation oscillation} (RCO), where low frequency modes are analyzed by phase cancellation, and high frequency modes are estimated by regularity of the solution. Extensive numerical results are reported to confirm our error estimates and to demonstrate that they are sharp.
We propose a new multistep deep learning-based algorithm for the resolution of moderate to high dimensional nonlinear backward stochastic differential equations (BSDEs) and their corresponding parabolic partial differential equations (PDE). Our algorithm relies on the iterated time discretisation of the BSDE and approximates its solution and gradient using deep neural networks and automatic differentiation at each time step. The approximations are obtained by sequential minimisation of local quadratic loss functions at each time step through stochastic gradient descent. We provide an analysis of approximation error in the case of a network architecture with weight constraints requiring only low regularity conditions on the generator of the BSDE. The algorithm increases accuracy from its single step parent model and has reduced complexity when compared to similar models in the literature.
Gibbs type priors have been shown to be natural generalizations of Dirichlet process (DP) priors used for intricate applications of Bayesian nonparametric methods. This includes applications to mixture models and to species sampling models arising in populations genetics. Notably these latter applications, and also applications where power law behavior such as that arising in natural language models are exhibited, provide instances where the DP model is wholly inadequate. Gibbs type priors include the DP, the also popular Pitman-Yor process and closely related normalized generalized gamma process as special cases. However, there is in fact a richer infinite class of such priors, where, despite knowledge about the exchangeable marginal structures produced by sampling $n$ observations, descriptions of the corresponding posterior distribution, a crucial component in Bayesian analysis, remain unknown. This paper presents descriptions of the posterior distributions for the general class, utilizing a novel proof that leverages the exclusive Gibbs properties of these models. The results are applied to several specific cases for further illustration.
A Milstein-type method is proposed for some highly non-linear non-autonomous time-changed stochastic differential equations (SDEs). The spatial variables in the coefficients of the time-changed SDEs satisfy the super-linear growth condition and the temporal variables obey some H\"older's continuity condition. The strong convergence in the finite time is studied and the convergence order is obtained.
This paper proposes a hierarchy of numerical fluxes for the compressible flow equations which are kinetic-energy and pressure equilibrium preserving and asymptotically entropy conservative, i.e., they are able to arbitrarily reduce the numerical error on entropy production due to the spatial discretization. The fluxes are based on the use of the harmonic mean for internal energy and only use algebraic operations, making them less computationally expensive than the entropy-conserving fluxes based on the logarithmic mean. The use of the geometric mean is also explored and identified to be well-suited to reduce errors on entropy evolution. Results of numerical tests confirmed the theoretical predictions and the entropy-conserving capabilities of a selection of schemes have been compared.
We discuss a system of stochastic differential equations with a stiff linear term and additive noise driven by fractional Brownian motions (fBms) with Hurst parameter H>1/2, which arise e. g., from spatial approximations of stochastic partial differential equations. For their numerical approximation, we present an exponential Euler scheme and show that it converges in the strong sense with an exact rate close to the Hurst parameter H. Further, based on [2], we conclude the existence of a unique stationary solution of the exponential Euler scheme that is pathwise asymptotically stable.
The dynamical equation of the boundary vorticity has been obtained, which shows that the viscosity at a solid wall is doubled as if the fluid became more viscous at the boundary. For certain viscous flows the boundary vorticity can be determined via the dynamical equation up to bounded errors for all time, without the need of knowing the details of the main stream flows. We then validate the dynamical equation by carrying out stochastic direct numerical simulations (i.e. the random vortex method for wall-bounded incompressible viscous flows) by two different means of updating the boundary vorticity, one using mollifiers of the Biot-Savart singular integral kernel, another using the dynamical equations.