亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Non-rigid registration, which deforms a source shape in a non-rigid way to align with a target shape, is a classical problem in computer vision. Such problems can be challenging because of imperfect data (noise, outliers and partial overlap) and high degrees of freedom. Existing methods typically adopt the $\ell_{p}$ type robust norm to measure the alignment error and regularize the smoothness of deformation, and use a proximal algorithm to solve the resulting non-smooth optimization problem. However, the slow convergence of such algorithms limits their wide applications. In this paper, we propose a formulation for robust non-rigid registration based on a globally smooth robust norm for alignment and regularization, which can effectively handle outliers and partial overlaps. The problem is solved using the majorization-minimization algorithm, which reduces each iteration to a convex quadratic problem with a closed-form solution. We further apply Anderson acceleration to speed up the convergence of the solver, enabling the solver to run efficiently on devices with limited compute capability. Extensive experiments demonstrate the effectiveness of our method for non-rigid alignment between two shapes with outliers and partial overlaps, with quantitative evaluation showing that it outperforms state-of-the-art methods in terms of registration accuracy and computational speed. The source code is available at //github.com/yaoyx689/AMM_NRR.

相關內容

Neural networks have been proposed for medical image registration by learning, with a substantial amount of training data, the optimal transformations between image pairs. These trained networks can further be optimized on a single pair of test images - known as test-time optimization. This work formulates image registration as a meta-learning algorithm. Such networks can be trained by aligning the training image pairs while simultaneously improving test-time optimization efficacy; tasks which were previously considered two independent training and optimization processes. The proposed meta-registration is hypothesized to maximize the efficiency and effectiveness of the test-time optimization in the "outer" meta-optimization of the networks. For image guidance applications that often are time-critical yet limited in training data, the potentially gained speed and accuracy are compared with classical registration algorithms, registration networks without meta-learning, and single-pair optimization without test-time optimization data. Experiments are presented in this paper using clinical transrectal ultrasound image data from 108 prostate cancer patients. These experiments demonstrate the effectiveness of a meta-registration protocol, which yields significantly improved performance relative to existing learning-based methods. Furthermore, the meta-registration achieves comparable results to classical iterative methods in a fraction of the time, owing to its rapid test-time optimization process.

Free Point Transformer (FPT) has been proposed as a data-driven, non-rigid point set registration approach using deep neural networks. As FPT does not assume constraints based on point vicinity or correspondence, it may be trained simply and in a flexible manner by minimizing an unsupervised loss based on the Chamfer Distance. This makes FPT amenable to real-world medical imaging applications where ground-truth deformations may be infeasible to obtain, or in scenarios where only a varying degree of completeness in the point sets to be aligned is available. To test the limit of the correspondence finding ability of FPT and its dependency on training data sets, this work explores the generalizability of the FPT from well-curated non-medical data sets to medical imaging data sets. First, we train FPT on the ModelNet40 dataset to demonstrate its effectiveness and the superior registration performance of FPT over iterative and learning-based point set registration methods. Second, we demonstrate superior performance in rigid and non-rigid registration and robustness to missing data. Last, we highlight the interesting generalizability of the ModelNet-trained FPT by registering reconstructed freehand ultrasound scans of the spine and generic spine models without additional training, whereby the average difference to the ground truth curvatures is 1.3 degrees, across 13 patients.

Registration of multivariate functional data involves handling of both cross-component and cross-observation phase variations. Allowing for the two phase variations to be modelled as general diffeomorphic time warpings, in this work we focus on the hitherto unconsidered setting where phase variation of the component functions are spatially correlated. We propose an algorithm to optimize a metric-based objective function for registration with a novel penalty term that incorporates the spatial correlation between the component phase variations through a kriging estimate of an appropriate phase random field. The penalty term encourages the overall phase at a particular location to be similar to the spatially weighted average phase in its neighbourhood, and thus engenders a regularization that prevents over-alignment. Utility of the registration method, and its superior performance compared to methods that fail to account for the spatial correlation, is demonstrated through performance on simulated examples and two multivariate functional datasets pertaining to EEG signals and ozone concentrations. The generality of the framework opens up the possibility for extension to settings involving different forms of correlation between the component functions and their phases.

High levels of noise usually exist in today's captured images due to the relatively small sensors equipped in the smartphone cameras, where the noise brings extra challenges to lossy image compression algorithms. Without the capacity to tell the difference between image details and noise, general image compression methods allocate additional bits to explicitly store the undesired image noise during compression and restore the unpleasant noisy image during decompression. Based on the observations, we optimize the image compression algorithm to be noise-aware as joint denoising and compression to resolve the bits misallocation problem. The key is to transform the original noisy images to noise-free bits by eliminating the undesired noise during compression, where the bits are later decompressed as clean images. Specifically, we propose a novel two-branch, weight-sharing architecture with plug-in feature denoisers to allow a simple and effective realization of the goal with little computational cost. Experimental results show that our method gains a significant improvement over the existing baseline methods on both the synthetic and real-world datasets. Our source code is available at //github.com/felixcheng97/DenoiseCompression.

Lighting is a determining factor in photography that affects the style, expression of emotion, and even quality of images. Creating or finding satisfying lighting conditions, in reality, is laborious and time-consuming, so it is of great value to develop a technology to manipulate illumination in an image as post-processing. Although previous works have explored techniques based on the physical viewpoint for relighting images, extensive supervisions and prior knowledge are necessary to generate reasonable images, restricting the generalization ability of these works. In contrast, we take the viewpoint of image-to-image translation and implicitly merge ideas of the conventional physical viewpoint. In this paper, we present an Illumination-Aware Network (IAN) which follows the guidance from hierarchical sampling to progressively relight a scene from a single image with high efficiency. In addition, an Illumination-Aware Residual Block (IARB) is designed to approximate the physical rendering process and to extract precise descriptors of light sources for further manipulations. We also introduce a depth-guided geometry encoder for acquiring valuable geometry- and structure-related representations once the depth information is available. Experimental results show that our proposed method produces better quantitative and qualitative relighting results than previous state-of-the-art methods. The code and models are publicly available on //github.com/NK-CS-ZZL/IAN.

Spatial data can exhibit dependence structures more complicated than can be represented using models that rely on the traditional assumptions of stationarity and isotropy. Several statistical methods have been developed to relax these assumptions. One in particular, the "spatial deformation approach" defines a transformation from the geographic space in which data are observed, to a latent space in which stationarity and isotropy are assumed to hold. Taking inspiration from this class of models, we develop a new model for spatially dependent data observed on graphs. Our method implies an embedding of the graph into Euclidean space wherein the covariance can be modeled using traditional covariance functions such as those from the Mat\'{e}rn family. This is done via a class of graph metrics compatible with such covariance functions. By estimating the edge weights which underlie these metrics, we can recover the "intrinsic distance" between nodes of a graph. We compare our model to existing methods for spatially dependent graph data, primarily conditional autoregressive (CAR) models and their variants and illustrate the advantages our approach has over traditional methods. We fit our model and competitors to bird abundance data for several species in North Carolina. We find that our model fits the data best, and provides insight into the interaction between species-specific spatial distributions and geography.

Time-lapse electrical resistivity tomography (ERT) is a popular geophysical method to estimate three-dimensional (3D) permeability fields from electrical potential difference measurements. Traditional inversion and data assimilation methods are used to ingest this ERT data into hydrogeophysical models to estimate permeability. Due to ill-posedness and the curse of dimensionality, existing inversion strategies provide poor estimates and low resolution of the 3D permeability field. Recent advances in deep learning provide us with powerful algorithms to overcome this challenge. This paper presents a deep learning (DL) framework to estimate the 3D subsurface permeability from time-lapse ERT data. To test the feasibility of the proposed framework, we train DL-enabled inverse models on simulation data. Subsurface process models based on hydrogeophysics are used to generate this synthetic data for deep learning analyses. Results show that proposed weak supervised learning can capture salient spatial features in the 3D permeability field. Quantitatively, the average mean squared error (in terms of the natural log) on the strongly labeled training, validation, and test datasets is less than 0.5. The R2-score (global metric) is greater than 0.75, and the percent error in each cell (local metric) is less than 10%. Finally, an added benefit in terms of computational cost is that the proposed DL-based inverse model is at least O(104) times faster than running a forward model. Note that traditional inversion may require multiple forward model simulations (e.g., in the order of 10 to 1000), which are very expensive. This computational savings (O(105) - O(107)) makes the proposed DL-based inverse model attractive for subsurface imaging and real-time ERT monitoring applications due to fast and yet reasonably accurate estimations of the permeability field.

It has been shown that deep neural networks are prone to overfitting on biased training data. Towards addressing this issue, meta-learning employs a meta model for correcting the training bias. Despite the promising performances, super slow training is currently the bottleneck in the meta learning approaches. In this paper, we introduce a novel Faster Meta Update Strategy (FaMUS) to replace the most expensive step in the meta gradient computation with a faster layer-wise approximation. We empirically find that FaMUS yields not only a reasonably accurate but also a low-variance approximation of the meta gradient. We conduct extensive experiments to verify the proposed method on two tasks. We show our method is able to save two-thirds of the training time while still maintaining the comparable or achieving even better generalization performance. In particular, our method achieves the state-of-the-art performance on both synthetic and realistic noisy labels, and obtains promising performance on long-tailed recognition on standard benchmarks.

Deep convolutional neural networks (CNNs) have recently achieved great success in many visual recognition tasks. However, existing deep neural network models are computationally expensive and memory intensive, hindering their deployment in devices with low memory resources or in applications with strict latency requirements. Therefore, a natural thought is to perform model compression and acceleration in deep networks without significantly decreasing the model performance. During the past few years, tremendous progress has been made in this area. In this paper, we survey the recent advanced techniques for compacting and accelerating CNNs model developed. These techniques are roughly categorized into four schemes: parameter pruning and sharing, low-rank factorization, transferred/compact convolutional filters, and knowledge distillation. Methods of parameter pruning and sharing will be described at the beginning, after that the other techniques will be introduced. For each scheme, we provide insightful analysis regarding the performance, related applications, advantages, and drawbacks etc. Then we will go through a few very recent additional successful methods, for example, dynamic capacity networks and stochastic depths networks. After that, we survey the evaluation matrix, the main datasets used for evaluating the model performance and recent benchmarking efforts. Finally, we conclude this paper, discuss remaining challenges and possible directions on this topic.

With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.

北京阿比特科技有限公司