In this paper, we propose an information geometry approach (IGA) for signal detection (SD) in ultra-massive multiple-input multiple-output (MIMO) systems. We formulate the signal detection as obtaining the marginals of the a posteriori probability distribution of the transmitted symbol vector. Then, a maximization of the a posteriori marginals (MPM) for signal detection can be performed. With the information geometry theory, we calculate the approximations of the a posteriori marginals. It is formulated as an iterative m-projection process between submanifolds with different constraints. We then apply the central-limit-theorem (CLT) to simplify the calculation of the m-projection since the direct calculation of the m-projection is of exponential-complexity. With the CLT, we obtain an approximate solution of the m-projection, which is asymptotically accurate. Simulation results demonstrate that the proposed IGA-SD emerges as a promising and efficient method to implement the signal detector in ultra-massive MIMO systems.
In this paper, a novel transmissive reconfigurable intelligent surface (TRIS) transceiver empowered integrated sensing and communications (ISAC) system is proposed for future multi-demand terminals. To address interference management, we implement rate-splitting multiple access (RSMA), where the common stream is independently designed for the sensing service. We introduce the sensing quality of service (QoS) criteria based on this structure and construct an optimization problem with the sensing QoS criteria as the objective function to optimize the sensing stream precoding matrix and the communication stream precoding matrix. Due to the coupling of optimization variables, the formulated problem is a non-convex optimization problem that cannot be solved directly. To tackle the above-mentioned challenging problem, alternating optimization (AO) is utilized to decouple the optimization variables. Specifically, the problem is decoupled into three subproblems about the sensing stream precoding matrix, the communication stream precoding matrix, and the auxiliary variables, which is solved alternatively through AO until the convergence is reached. For solving the problem, successive convex approximation (SCA) is applied to deal with the sum-rate threshold constraints on communications, and difference-of-convex (DC) programming is utilized to solve rank-one non-convex constraints. Numerical simulation results verify the superiority of the proposed scheme in terms of improving the communication and sensing QoS.
In this paper, we introduce InMD-X, a collection of multiple large language models specifically designed to cater to the unique characteristics and demands of Internal Medicine Doctors (IMD). InMD-X represents a groundbreaking development in natural language processing, offering a suite of language models fine-tuned for various aspects of the internal medicine field. These models encompass a wide range of medical sub-specialties, enabling IMDs to perform more efficient and accurate research, diagnosis, and documentation. InMD-X's versatility and adaptability make it a valuable tool for improving the healthcare industry, enhancing communication between healthcare professionals, and advancing medical research. Each model within InMD-X is meticulously tailored to address specific challenges faced by IMDs, ensuring the highest level of precision and comprehensiveness in clinical text analysis and decision support. This paper provides an overview of the design, development, and evaluation of InMD-X, showcasing its potential to revolutionize the way internal medicine practitioners interact with medical data and information. We present results from extensive testing, demonstrating the effectiveness and practical utility of InMD-X in real-world medical scenarios.
In this paper, a novel amplitude phase shift keying (APSK) modulation scheme for cooperative backscatter communications aided by a reconfigurable intelligent surface (RIS-CBC) is presented, according to which the RIS is configured to modulate backscatter information onto unmodulated or PSK-modulated signals impinging on its surface via APSK. We consider both passive and active RISs, with the latter including an amplification unit at each reflecting element. In the passive (resp. active) RIS-CBC-APSK, backscatter information is conveyed through the number of RIS reflecting elements being on the ON state (resp. active mode) and their phase shift values. By using the optimal APSK constellation to ensure that reflected signals from the RIS undergo APSK modulation, a bit-mapping mechanism is presented. Assuming maximum-likelihood detection, we also present closed-form upper bounds for the symbol error rate (SER) performance for both passive and active RIS-CBC-APSK schemes over Rician fading channels. In addition, we devise a low-complexity detector that can achieve flexible trade-offs between performance and complexity. Finally, we extend RIS-CBC-APSK to multiple-input single-output scenarios and present an alternating optimization approach for the joint design of transmit beamforming and RIS reflection. Our extensive simulation results on the SER performance corroborate our conducted performance analysis and showcase the superiority of the proposed RIS-CBC-APSK schemes over the state-of-the-art RIS-CBC benchmarks.
This paper proposes an adaptive behavioral decision-making method for autonomous vehicles (AVs) focusing on complex merging scenarios. Leveraging principles from non-cooperative game theory, we develop a vehicle interaction behavior model that defines key traffic elements and integrates a multifactorial reward function. Maximum entropy inverse reinforcement learning (IRL) is employed for behavior model parameter optimization. Optimal matching parameters can be obtained using the interaction behavior feature vector and the behavior probabilities output by the vehicle interaction model. Further, a behavioral decision-making method adapted to dynamic environments is proposed. By establishing a mapping model between multiple environmental variables and model parameters, it enables parameters online learning and recognition, and achieves to output interactive behavior probabilities of AVs. Quantitative analysis employing naturalistic driving datasets (highD and exiD) and real-vehicle test data validates the model's high consistency with human decision-making. In 188 tested interaction scenarios, the average human-like similarity rate is 81.73%, with a notable 83.12% in the highD dataset. Furthermore, in 145 dynamic interactions, the method matches human decisions at 77.12%, with 6913 consistence instances. Moreover, in real-vehicle tests, a 72.73% similarity with 0% safety violations are obtained. Results demonstrate the effectiveness of our proposed method in enabling AVs to make informed adaptive behavior decisions in interactive environments.
In this paper, we propose an efficient multi-stage algorithm for non-adaptive Group Testing (GT) with general correlated prior statistics. The proposed solution can be applied to any correlated statistical prior represented in trellis, e.g., finite state machines and Markov processes. We introduce a variation of List Viterbi Algorithm (LVA) to enable accurate recovery using much fewer tests than objectives, which efficiently gains from the correlated prior statistics structure. Our numerical results demonstrate that the proposed Multi-Stage GT (MSGT) algorithm can obtain the optimal Maximum A Posteriori (MAP) performance with feasible complexity in practical regimes, such as with COVID-19 and sparse signal recovery applications, and reduce in the scenarios tested the number of pooled tests by at least $25\%$ compared to existing classical low complexity GT algorithms. Moreover, we analytically characterize the complexity of the proposed MSGT algorithm that guarantees its efficiency.
As a primary means of information acquisition, information retrieval (IR) systems, such as search engines, have integrated themselves into our daily lives. These systems also serve as components of dialogue, question-answering, and recommender systems. The trajectory of IR has evolved dynamically from its origins in term-based methods to its integration with advanced neural models. While the neural models excel at capturing complex contextual signals and semantic nuances, thereby reshaping the IR landscape, they still face challenges such as data scarcity, interpretability, and the generation of contextually plausible yet potentially inaccurate responses. This evolution requires a combination of both traditional methods (such as term-based sparse retrieval methods with rapid response) and modern neural architectures (such as language models with powerful language understanding capacity). Meanwhile, the emergence of large language models (LLMs), typified by ChatGPT and GPT-4, has revolutionized natural language processing due to their remarkable language understanding, generation, generalization, and reasoning abilities. Consequently, recent research has sought to leverage LLMs to improve IR systems. Given the rapid evolution of this research trajectory, it is necessary to consolidate existing methodologies and provide nuanced insights through a comprehensive overview. In this survey, we delve into the confluence of LLMs and IR systems, including crucial aspects such as query rewriters, retrievers, rerankers, and readers. Additionally, we explore promising directions within this expanding field.
In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.
In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.
We study the problem of learning to reason in large scale knowledge graphs (KGs). More specifically, we describe a novel reinforcement learning framework for learning multi-hop relational paths: we use a policy-based agent with continuous states based on knowledge graph embeddings, which reasons in a KG vector space by sampling the most promising relation to extend its path. In contrast to prior work, our approach includes a reward function that takes the accuracy, diversity, and efficiency into consideration. Experimentally, we show that our proposed method outperforms a path-ranking based algorithm and knowledge graph embedding methods on Freebase and Never-Ending Language Learning datasets.
In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.