Single-step adversarial training (AT) has received wide attention as it proved to be both efficient and robust. However, a serious problem of catastrophic overfitting exists, i.e., the robust accuracy against projected gradient descent (PGD) attack suddenly drops to $0\%$ during the training. In this paper, we understand this problem from a novel perspective of optimization and firstly reveal the close link between the fast-growing gradient of each sample and overfitting, which can also be applied to understand the robust overfitting phenomenon in multi-step AT. To control the growth of the gradient during the training, we propose a new AT method, subspace adversarial training (Sub-AT), which constrains the AT in a carefully extracted subspace. It successfully resolves both two kinds of overfitting and hence significantly boosts the robustness. In subspace, we also allow single-step AT with larger steps and larger radius, which further improves the robustness performance. As a result, we achieve the state-of-the-art single-step AT performance: our pure single-step AT can reach over $\mathbf{51}\%$ robust accuracy against strong PGD-50 attack with radius $8/255$ on CIFAR-10, even surpassing the standard multi-step PGD-10 AT with huge computational advantages. The code is released$\footnote{\url{//github.com/nblt/Sub-AT}}$.
This paper studies the adversarial torn-paper channel. This problem is motivated by applications in DNA data storage where the DNA strands that carry the information may break into smaller pieces that are received out of order. Our model extends the previously researched probabilistic setting to the worst-case. We develop code constructions for any parameters of the channel for which non-vanishing asymptotic rate is possible and show our constructions achieve optimal asymptotic rate while allowing for efficient encoding and decoding. Finally, we extend our results to related settings included multi-strand storage, presence of substitution errors, or incomplete coverage.
Self-training algorithms, which train a model to fit pseudolabels predicted by another previously-learned model, have been very successful for learning with unlabeled data using neural networks. However, the current theoretical understanding of self-training only applies to linear models. This work provides a unified theoretical analysis of self-training with deep networks for semi-supervised learning, unsupervised domain adaptation, and unsupervised learning. At the core of our analysis is a simple but realistic ``expansion'' assumption, which states that a low-probability subset of the data must expand to a neighborhood with large probability relative to the subset. We also assume that neighborhoods of examples in different classes have minimal overlap. We prove that under these assumptions, the minimizers of population objectives based on self-training and input-consistency regularization will achieve high accuracy with respect to ground-truth labels. By using off-the-shelf generalization bounds, we immediately convert this result to sample complexity guarantees for neural nets that are polynomial in the margin and Lipschitzness. Our results help explain the empirical successes of recently proposed self-training algorithms which use input consistency regularization.
Adversarial examples are commonly viewed as a threat to ConvNets. Here we present an opposite perspective: adversarial examples can be used to improve image recognition models if harnessed in the right manner. We propose AdvProp, an enhanced adversarial training scheme which treats adversarial examples as additional examples, to prevent overfitting. Key to our method is the usage of a separate auxiliary batch norm for adversarial examples, as they have different underlying distributions to normal examples. We show that AdvProp improves a wide range of models on various image recognition tasks and performs better when the models are bigger. For instance, by applying AdvProp to the latest EfficientNet-B7 [28] on ImageNet, we achieve significant improvements on ImageNet (+0.7%), ImageNet-C (+6.5%), ImageNet-A (+7.0%), Stylized-ImageNet (+4.8%). With an enhanced EfficientNet-B8, our method achieves the state-of-the-art 85.5% ImageNet top-1 accuracy without extra data. This result even surpasses the best model in [20] which is trained with 3.5B Instagram images (~3000X more than ImageNet) and ~9.4X more parameters. Models are available at //github.com/tensorflow/tpu/tree/master/models/official/efficientnet.
Adversarial attacks to image classification systems present challenges to convolutional networks and opportunities for understanding them. This study suggests that adversarial perturbations on images lead to noise in the features constructed by these networks. Motivated by this observation, we develop new network architectures that increase adversarial robustness by performing feature denoising. Specifically, our networks contain blocks that denoise the features using non-local means or other filters; the entire networks are trained end-to-end. When combined with adversarial training, our feature denoising networks substantially improve the state-of-the-art in adversarial robustness in both white-box and black-box attack settings. On ImageNet, under 10-iteration PGD white-box attacks where prior art has 27.9% accuracy, our method achieves 55.7%; even under extreme 2000-iteration PGD white-box attacks, our method secures 42.6% accuracy. A network based on our method was ranked first in Competition on Adversarial Attacks and Defenses (CAAD) 2018 --- it achieved 50.6% classification accuracy on a secret, ImageNet-like test dataset against 48 unknown attackers, surpassing the runner-up approach by ~10%. Code and models will be made publicly available.
In this article, we introduce a new mode for training Generative Adversarial Networks (GANs). Rather than minimizing the distance of evidence distribution $\tilde{p}(x)$ and the generative distribution $q(x)$, we minimize the distance of $\tilde{p}(x_r)q(x_f)$ and $\tilde{p}(x_f)q(x_r)$. This adversarial pattern can be interpreted as a Turing test in GANs. It allows us to use information of real samples during training generator and accelerates the whole training procedure. We even find that just proportionally increasing the size of discriminator and generator, it succeeds on 256x256 resolution without adjusting hyperparameters carefully.
Meta-learning enables a model to learn from very limited data to undertake a new task. In this paper, we study the general meta-learning with adversarial samples. We present a meta-learning algorithm, ADML (ADversarial Meta-Learner), which leverages clean and adversarial samples to optimize the initialization of a learning model in an adversarial manner. ADML leads to the following desirable properties: 1) it turns out to be very effective even in the cases with only clean samples; 2) it is model-agnostic, i.e., it is compatible with any learning model that can be trained with gradient descent; and most importantly, 3) it is robust to adversarial samples, i.e., unlike other meta-learning methods, it only leads to a minor performance degradation when there are adversarial samples. We show via extensive experiments that ADML delivers the state-of-the-art performance on two widely-used image datasets, MiniImageNet and CIFAR100, in terms of both accuracy and robustness.
We introduce an effective model to overcome the problem of mode collapse when training Generative Adversarial Networks (GAN). Firstly, we propose a new generator objective that finds it better to tackle mode collapse. And, we apply an independent Autoencoders (AE) to constrain the generator and consider its reconstructed samples as "real" samples to slow down the convergence of discriminator that enables to reduce the gradient vanishing problem and stabilize the model. Secondly, from mappings between latent and data spaces provided by AE, we further regularize AE by the relative distance between the latent and data samples to explicitly prevent the generator falling into mode collapse setting. This idea comes when we find a new way to visualize the mode collapse on MNIST dataset. To the best of our knowledge, our method is the first to propose and apply successfully the relative distance of latent and data samples for stabilizing GAN. Thirdly, our proposed model, namely Generative Adversarial Autoencoder Networks (GAAN), is stable and has suffered from neither gradient vanishing nor mode collapse issues, as empirically demonstrated on synthetic, MNIST, MNIST-1K, CelebA and CIFAR-10 datasets. Experimental results show that our method can approximate well multi-modal distribution and achieve better results than state-of-the-art methods on these benchmark datasets. Our model implementation is published here: //github.com/tntrung/gaan
Despite of the success of Generative Adversarial Networks (GANs) for image generation tasks, the trade-off between image diversity and visual quality are an well-known issue. Conventional techniques achieve either visual quality or image diversity; the improvement in one side is often the result of sacrificing the degradation in the other side. In this paper, we aim to achieve both simultaneously by improving the stability of training GANs. A key idea of the proposed approach is to implicitly regularizing the discriminator using a representative feature. For that, this representative feature is extracted from the data distribution, and then transferred to the discriminator for enforcing slow updates of the gradient. Consequently, the entire training process is stabilized because the learning curve of discriminator varies slowly. Based on extensive evaluation, we demonstrate that our approach improves the visual quality and diversity of state-of-the art GANs.
Deep neural networks (DNNs) have been found to be vulnerable to adversarial examples resulting from adding small-magnitude perturbations to inputs. Such adversarial examples can mislead DNNs to produce adversary-selected results. Different attack strategies have been proposed to generate adversarial examples, but how to produce them with high perceptual quality and more efficiently requires more research efforts. In this paper, we propose AdvGAN to generate adversarial examples with generative adversarial networks (GANs), which can learn and approximate the distribution of original instances. For AdvGAN, once the generator is trained, it can generate adversarial perturbations efficiently for any instance, so as to potentially accelerate adversarial training as defenses. We apply AdvGAN in both semi-whitebox and black-box attack settings. In semi-whitebox attacks, there is no need to access the original target model after the generator is trained, in contrast to traditional white-box attacks. In black-box attacks, we dynamically train a distilled model for the black-box model and optimize the generator accordingly. Adversarial examples generated by AdvGAN on different target models have high attack success rate under state-of-the-art defenses compared to other attacks. Our attack has placed the first with 92.76% accuracy on a public MNIST black-box attack challenge.
Unsupervised learning is of growing interest because it unlocks the potential held in vast amounts of unlabelled data to learn useful representations for inference. Autoencoders, a form of generative model, may be trained by learning to reconstruct unlabelled input data from a latent representation space. More robust representations may be produced by an autoencoder if it learns to recover clean input samples from corrupted ones. Representations may be further improved by introducing regularisation during training to shape the distribution of the encoded data in latent space. We suggest denoising adversarial autoencoders, which combine denoising and regularisation, shaping the distribution of latent space using adversarial training. We introduce a novel analysis that shows how denoising may be incorporated into the training and sampling of adversarial autoencoders. Experiments are performed to assess the contributions that denoising makes to the learning of representations for classification and sample synthesis. Our results suggest that autoencoders trained using a denoising criterion achieve higher classification performance, and can synthesise samples that are more consistent with the input data than those trained without a corruption process.