亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The rapid development of Large Language Models (LLMs) has brought remarkable generative capabilities across diverse tasks. However, despite the impressive achievements, these LLMs still have numerous inherent vulnerabilities, particularly when faced with jailbreak attacks. By investigating jailbreak attacks, we can uncover hidden weaknesses in LLMs and inform the development of more robust defense mechanisms to fortify their security. In this paper, we further explore the boundary of jailbreak attacks on LLMs and propose Analyzing-based Jailbreak (ABJ). This effective jailbreak attack method takes advantage of LLMs' growing analyzing and reasoning capability and reveals their underlying vulnerabilities when facing analyzing-based tasks. We conduct a detailed evaluation of ABJ across various open-source and closed-source LLMs, which achieves 94.8% attack success rate (ASR) and 1.06 attack efficiency (AE) on GPT-4-turbo-0409, demonstrating state-of-the-art attack effectiveness and efficiency. Our research highlights the importance of prioritizing and enhancing the safety of LLMs to mitigate the risks of misuse. The code is publicly available at h//github.com/theshi-1128/ABJ-Attack. Warning: This paper contains examples of LLMs that might be offensive or harmful.

相關內容

The rapid advancement of Multimodal Large Language Models (MLLMs) has led to remarkable performances across various domains. However, this progress is accompanied by a substantial surge in the resource consumption of these models. We address this pressing issue by introducing a new approach, Token Reduction using CLIP Metric (TRIM), aimed at improving the efficiency of MLLMs without sacrificing their performance. Inspired by human attention patterns in Visual Question Answering (VQA) tasks, TRIM presents a fresh perspective on the selection and reduction of image tokens. The TRIM method has been extensively tested across 12 datasets, and the results demonstrate a significant reduction in computational overhead while maintaining a consistent level of performance. This research marks a critical stride in efficient MLLM development, promoting greater accessibility and sustainability of high-performing models.

We show that the Rademacher complexity-based approach can generate non-vacuous generalisation bounds on Convolutional Neural Networks (CNNs) for classifying a small number of classes of images. The development of new Talagrand's contraction lemmas for high-dimensional mappings between function spaces and CNNs for general Lipschitz activation functions is a key technical contribution. Our results show that the Rademacher complexity does not depend on the network length for CNNs with some special types of activation functions such as ReLU, Leaky ReLU, Parametric Rectifier Linear Unit, Sigmoid, and Tanh.

Significant progress has been made in the field of Instruction-based Image Editing (IIE). However, evaluating these models poses a significant challenge. A crucial requirement in this field is the establishment of a comprehensive evaluation benchmark for accurately assessing editing results and providing valuable insights for its further development. In response to this need, we propose I2EBench, a comprehensive benchmark designed to automatically evaluate the quality of edited images produced by IIE models from multiple dimensions. I2EBench consists of 2,000+ images for editing, along with 4,000+ corresponding original and diverse instructions. It offers three distinctive characteristics: 1) Comprehensive Evaluation Dimensions: I2EBench comprises 16 evaluation dimensions that cover both high-level and low-level aspects, providing a comprehensive assessment of each IIE model. 2) Human Perception Alignment: To ensure the alignment of our benchmark with human perception, we conducted an extensive user study for each evaluation dimension. 3) Valuable Research Insights: By analyzing the advantages and disadvantages of existing IIE models across the 16 dimensions, we offer valuable research insights to guide future development in the field. We will open-source I2EBench, including all instructions, input images, human annotations, edited images from all evaluated methods, and a simple script for evaluating the results from new IIE models. The code, dataset and generated images from all IIE models are provided in github: //github.com/cocoshe/I2EBench.

Recent advancements in 3D Large Language Models (LLMs) have demonstrated promising capabilities for 3D scene understanding. However, previous methods exhibit deficiencies in general referencing and grounding capabilities for intricate scene comprehension. In this paper, we introduce the use of object identifiers and object-centric representations to interact with scenes at the object level. Specifically, we decompose the input 3D scene into a set of object proposals, each assigned a unique identifier token, which enables efficient object referencing and grounding during user-assistant interactions. Given the scarcity of scene-language data, we model the scene embeddings as a sequence of explicit object-level embeddings, derived from semantic-rich 2D or 3D representations. By employing object identifiers, we transform diverse 3D scene-language tasks into a unified question-answering format, facilitating joint training without the need for additional task-specific heads. With minimal fine-tuning on all downstream tasks, our model significantly outperforms existing methods on benchmarks including ScanRefer, Multi3DRefer, Scan2Cap, ScanQA, and SQA3D.

Fully connected Graph Transformers (GT) have rapidly become prominent in the static graph community as an alternative to Message-Passing models, which suffer from a lack of expressivity, oversquashing, and under-reaching. However, in a dynamic context, by interconnecting all nodes at multiple snapshots with self-attention, GT loose both structural and temporal information. In this work, we introduce Supra-LAplacian encoding for spatio-temporal TransformErs (SLATE), a new spatio-temporal encoding to leverage the GT architecture while keeping spatio-temporal information. Specifically, we transform Discrete Time Dynamic Graphs into multi-layer graphs and take advantage of the spectral properties of their associated supra-Laplacian matrix. Our second contribution explicitly model nodes' pairwise relationships with a cross-attention mechanism, providing an accurate edge representation for dynamic link prediction. SLATE outperforms numerous state-of-the-art methods based on Message-Passing Graph Neural Networks combined with recurrent models (e.g LSTM), and Dynamic Graph Transformers, on 9 datasets. Code and instructions to reproduce our results will be open-sourced.

During pre-training, the Text-to-Image (T2I) diffusion models encode factual knowledge into their parameters. These parameterized facts enable realistic image generation, but they may become obsolete over time, thereby misrepresenting the current state of the world. Knowledge editing techniques aim to update model knowledge in a targeted way. However, facing the dual challenges posed by inadequate editing datasets and unreliable evaluation criterion, the development of T2I knowledge editing encounter difficulties in effectively generalizing injected knowledge. In this work, we design a T2I knowledge editing framework by comprehensively spanning on three phases: First, we curate a dataset \textbf{CAKE}, comprising paraphrase and multi-object test, to enable more fine-grained assessment on knowledge generalization. Second, we propose a novel criterion, \textbf{adaptive CLIP threshold}, to effectively filter out false successful images under the current criterion and achieve reliable editing evaluation. Finally, we introduce \textbf{MPE}, a simple but effective approach for T2I knowledge editing. Instead of tuning parameters, MPE precisely recognizes and edits the outdated part of the conditioning text-prompt to accommodate the up-to-date knowledge. A straightforward implementation of MPE (Based on in-context learning) exhibits better overall performance than previous model editors. We hope these efforts can further promote faithful evaluation of T2I knowledge editing methods.

Segment Anything Model (SAM) has recently gained much attention for its outstanding generalization to unseen data and tasks. Despite its promising prospect, the vulnerabilities of SAM, especially to universal adversarial perturbation (UAP) have not been thoroughly investigated yet. In this paper, we propose DarkSAM, the first prompt-free universal attack framework against SAM, including a semantic decoupling-based spatial attack and a texture distortion-based frequency attack. We first divide the output of SAM into foreground and background. Then, we design a shadow target strategy to obtain the semantic blueprint of the image as the attack target. DarkSAM is dedicated to fooling SAM by extracting and destroying crucial object features from images in both spatial and frequency domains. In the spatial domain, we disrupt the semantics of both the foreground and background in the image to confuse SAM. In the frequency domain, we further enhance the attack effectiveness by distorting the high-frequency components (i.e., texture information) of the image. Consequently, with a single UAP, DarkSAM renders SAM incapable of segmenting objects across diverse images with varying prompts. Experimental results on four datasets for SAM and its two variant models demonstrate the powerful attack capability and transferability of DarkSAM.

Disruption prediction has made rapid progress in recent years, especially in machine learning (ML)-based methods. Understanding why a predictor makes a certain prediction can be as crucial as the prediction's accuracy for future tokamak disruption predictors. The purpose of most disruption predictors is accuracy or cross-machine capability. However, if a disruption prediction model can be interpreted, it can tell why certain samples are classified as disruption precursors. This allows us to tell the types of incoming disruption and gives us insight into the mechanism of disruption. This paper designs a disruption predictor called Interpretable Disruption Predictor based On Physics-guided feature extraction (IDP-PGFE) on J-TEXT. The prediction performance of the model is effectively improved by extracting physics-guided features. A high-performance model is required to ensure the validity of the interpretation results. The interpretability study of IDP-PGFE provides an understanding of J-TEXT disruption and is generally consistent with existing comprehension of disruption. IDP-PGFE has been applied to the disruption due to continuously increasing density towards density limit experiments on J-TEXT. The time evolution of the PGFE features contribution demonstrates that the application of ECRH triggers radiation-caused disruption, which lowers the density at disruption. While the application of RMP indeed raises the density limit in J-TEXT. The interpretability study guides intuition on the physical mechanisms of density limit disruption that RMPs affect not only the MHD instabilities but also the radiation profile, which delays density limit disruption.

Large Language Models (LLMs) have demonstrated remarkable capabilities across various tasks but their performance in complex logical reasoning tasks remains unsatisfactory. Although some prompting methods, such as Chain-of-Thought, can improve the reasoning ability of LLMs to some extent, they suffer from an unfaithful issue where derived conclusions may not align with the generated reasoning chain. To address this issue, some studies employ the approach of propositional logic to further enhance logical reasoning abilities of LLMs. However, the potential omissions in the extraction of logical expressions in these methods can cause information loss in the logical reasoning process, thereby generating incorrect results. To this end, we propose Logic-of-Thought (LoT) prompting which employs propositional logic to generate expanded logical information from input context, and utilizes the generated logical information as an additional augmentation to the input prompts, thereby enhancing the capability of logical reasoning. The LoT is orthogonal to existing prompting methods and can be seamlessly integrated with them. Extensive experiments demonstrate that LoT boosts the performance of various prompting methods with a striking margin across five logical reasoning tasks. In particular, the LoT enhances Chain-of-Thought's performance on the ReClor dataset by +4.35%; moreover, it improves Chain-of-Thought with Self-Consistency's performance on LogiQA by +5%; additionally, it boosts performance of Tree-of-Thoughts on ProofWriter dataset by +8%.

Reinforcement Learning from Human Feedback (RLHF) enhances the alignment between LLMs and human preference. The workflow of RLHF typically involves several models and tasks in a series of distinct stages. Existing RLHF training systems view each task as the smallest execution unit thus overlooking the opportunities for subtask-level optimizations. Due to the intrinsic nature of RLHF training, i.e., the data skewness in the generation stage, and the pipeline bubbles in the training stage, existing RLHF systems suffer from low GPU utilization in production deployments. RLHFuse breaks the traditional view of RLHF workflow as a composition of individual tasks, splitting each task into finer-grained subtasks, and performing stage fusion to improve GPU utilization. RLHFuse contains two key ideas. First, for generation and inference tasks, RLHFuse splits them into sample-level subtasks, enabling efficient inter-stage fusion to mitigate the original generation bottleneck dominated by long-tailed samples. Second, for training tasks, RLHFuse breaks them into subtasks of micro-batches. By leveraging the intuition that pipeline execution can be essentially complemented by another pipeline, RLHFuse performs intra-stage fusion to concurrently execute these subtasks in the training stage with a fused pipeline schedule, resulting in fewer pipeline bubbles. In addition, RLHFuse incorporates a series of system optimizations tailored for each stage of RLHF, making it efficient and scalable for our internal product usage. We evaluate RLHFuse on various popular LLMs and the results show that RLHFuse increases the training throughput by up to 3.7x, compared to existing state-of-the-art systems.

北京阿比特科技有限公司