亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper describes the Royalflush speaker diarization system submitted to the Multi-channel Multi-party Meeting Transcription Challenge. Our system comprises speech enhancement, overlapped speech detection, speaker embedding extraction, speaker clustering, speech separation and system fusion. In this system, we made three contributions. First, we propose an architecture of combining the multi-channel and U-Net-based models, aiming at utilizing the benefits of these two individual architectures, for far-field overlapped speech detection. Second, in order to use overlapped speech detection model to help speaker diarization, a speech separation based overlapped speech handling approach, in which the speaker verification technique is further applied, is proposed. Third, we explore three speaker embedding methods, and obtained the state-of-the-art performance on the CNCeleb-E test set. With these proposals, our best individual system significantly reduces DER from 15.25% to 6.40%, and the fusion of four systems finally achieves a DER of 6.30% on the far-field Alimeeting evaluation set.

相關內容

ICASSP是全球最大,最全面(mian)的(de)技術會(hui)議(yi),重點是信(xin)號(hao)(hao)處理(li)及其應用。會(hui)議(yi)主題包括但不限(xian)于(yu)以下主題:音(yin)頻(pin)和(he)聲(sheng)音(yin)信(xin)號(hao)(hao)處理(li)、量子信(xin)號(hao)(hao)處理(li)、生(sheng)物醫學信(xin)號(hao)(hao)與圖像處理(li)、遙感(gan)與信(xin)號(hao)(hao)處理(li)、壓縮(suo)感(gan)知,采樣和(he)字典(dian)學習(xi)、傳感(gan)器(qi)陣列和(he)多通道(dao)信(xin)號(hao)(hao)處理(li)、信(xin)號(hao)(hao)處理(li)的(de)設計與實(shi)現(xian)、大數據信(xin)號(hao)(hao)處理(li)、財務信(xin)號(hao)(hao)處理(li)。 官網地址:

The neural network (NN) becomes one of the most heated type of models in various signal processing applications. However, NNs are extremely vulnerable to adversarial examples (AEs). To defend AEs, adversarial training (AT) is believed to be the most effective method while due to the intensive computation, AT is limited to be applied in most applications. In this paper, to resolve the problem, we design a generic and efficient AT improvement scheme, namely case-aware adversarial training (CAT). Specifically, the intuition stems from the fact that a very limited part of informative samples can contribute to most of model performance. Alternatively, if only the most informative AEs are used in AT, we can lower the computation complexity of AT significantly as maintaining the defense effect. To achieve this, CAT achieves two breakthroughs. First, a method to estimate the information degree of adversarial examples is proposed for AE filtering. Second, to further enrich the information that the NN can obtain from AEs, CAT involves a weight estimation and class-level balancing based sampling strategy to increase the diversity of AT at each iteration. Extensive experiments show that CAT is faster than vanilla AT by up to 3x while achieving competitive defense effect.

This paper presents the details of our system designed for the Task 1 of Multimodal Information Based Speech Processing (MISP) Challenge 2021. The purpose of Task 1 is to leverage both audio and video information to improve the environmental robustness of far-field wake word spotting. In the proposed system, firstly, we take advantage of speech enhancement algorithms such as beamforming and weighted prediction error (WPE) to address the multi-microphone conversational audio. Secondly, several data augmentation techniques are applied to simulate a more realistic far-field scenario. For the video information, the provided region of interest (ROI) is used to obtain visual representation. Then the multi-layer CNN is proposed to learn audio and visual representations, and these representations are fed into our two-branch attention-based network which can be employed for fusion, such as transformer and conformed. The focal loss is used to fine-tune the model and improve the performance significantly. Finally, multiple trained models are integrated by casting vote to achieve our final 0.091 score.

The success of deep learning has enabled advances in multimodal tasks that require non-trivial fusion of multiple input domains. Although multimodal models have shown potential in many problems, their increased complexity makes them more vulnerable to attacks. A Backdoor (or Trojan) attack is a class of security vulnerability wherein an attacker embeds a malicious secret behavior into a network (e.g. targeted misclassification) that is activated when an attacker-specified trigger is added to an input. In this work, we show that multimodal networks are vulnerable to a novel type of attack that we refer to as Dual-Key Multimodal Backdoors. This attack exploits the complex fusion mechanisms used by state-of-the-art networks to embed backdoors that are both effective and stealthy. Instead of using a single trigger, the proposed attack embeds a trigger in each of the input modalities and activates the malicious behavior only when both the triggers are present. We present an extensive study of multimodal backdoors on the Visual Question Answering (VQA) task with multiple architectures and visual feature backbones. A major challenge in embedding backdoors in VQA models is that most models use visual features extracted from a fixed pretrained object detector. This is challenging for the attacker as the detector can distort or ignore the visual trigger entirely, which leads to models where backdoors are over-reliant on the language trigger. We tackle this problem by proposing a visual trigger optimization strategy designed for pretrained object detectors. Through this method, we create Dual-Key Backdoors with over a 98% attack success rate while only poisoning 1% of the training data. Finally, we release TrojVQA, a large collection of clean and trojan VQA models to enable research in defending against multimodal backdoors.

End-to-end speaker diarization approaches have shown exceptional performance over the traditional modular approaches. To further improve the performance of the end-to-end speaker diarization for real speech recordings, recently works have been proposed which integrate unsupervised clustering algorithms with the end-to-end neural diarization models. However, these methods have a number of drawbacks: 1) The unsupervised clustering algorithms cannot leverage the supervision from the available datasets; 2) The K-means-based unsupervised algorithms that are explored often suffer from the constraint violation problem; 3) There is unavoidable mismatch between the supervised training and the unsupervised inference. In this paper, a robust generic neural clustering approach is proposed that can be integrated with any chunk-level predictor to accomplish a fully supervised end-to-end speaker diarization model. Also, by leveraging the sequence modelling ability of a recurrent neural network, the proposed neural clustering approach can dynamically estimate the number of speakers during inference. Experimental show that when integrating an attractor-based chunk-level predictor, the proposed neural clustering approach can yield better Diarization Error Rate (DER) than the constrained K-means-based clustering approaches under the mismatched conditions.

Heart sound diagnosis and classification play an essential role in detecting cardiovascular disorders, especially when the remote diagnosis becomes standard clinical practice. Most of the current work is designed for single category based heard sound classification tasks. To further extend the landscape of the automatic heart sound diagnosis landscape, this work proposes a deep multilabel learning model that can automatically annotate heart sound recordings with labels from different label groups, including murmur's timing, pitch, grading, quality, and shape. Our experiment results show that the proposed method has achieved outstanding performance on the holdout data for the multi-labelling task with sensitivity=0.990, specificity=0.999, F1=0.990 at the segments level, and an overall accuracy=0.969 at the patient's recording level.

Despite the recent progress in deep learning, most approaches still go for a silo-like solution, focusing on learning each task in isolation: training a separate neural network for each individual task. Many real-world problems, however, call for a multi-modal approach and, therefore, for multi-tasking models. Multi-task learning (MTL) aims to leverage useful information across tasks to improve the generalization capability of a model. This thesis is concerned with multi-task learning in the context of computer vision. First, we review existing approaches for MTL. Next, we propose several methods that tackle important aspects of multi-task learning. The proposed methods are evaluated on various benchmarks. The results show several advances in the state-of-the-art of multi-task learning. Finally, we discuss several possibilities for future work.

Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio. Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchmarks, and hence late-stage fusion of final representations or predictions from each modality (`late-fusion') is still a dominant paradigm for multimodal video classification. Instead, we introduce a novel transformer based architecture that uses `fusion bottlenecks' for modality fusion at multiple layers. Compared to traditional pairwise self-attention, our model forces information between different modalities to pass through a small number of bottleneck latents, requiring the model to collate and condense the most relevant information in each modality and only share what is necessary. We find that such a strategy improves fusion performance, at the same time reducing computational cost. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.

Deep Learning has implemented a wide range of applications and has become increasingly popular in recent years. The goal of multimodal deep learning is to create models that can process and link information using various modalities. Despite the extensive development made for unimodal learning, it still cannot cover all the aspects of human learning. Multimodal learning helps to understand and analyze better when various senses are engaged in the processing of information. This paper focuses on multiple types of modalities, i.e., image, video, text, audio, body gestures, facial expressions, and physiological signals. Detailed analysis of past and current baseline approaches and an in-depth study of recent advancements in multimodal deep learning applications has been provided. A fine-grained taxonomy of various multimodal deep learning applications is proposed, elaborating on different applications in more depth. Architectures and datasets used in these applications are also discussed, along with their evaluation metrics. Last, main issues are highlighted separately for each domain along with their possible future research directions.

For better user experience and business effectiveness, Click-Through Rate (CTR) prediction has been one of the most important tasks in E-commerce. Although extensive CTR prediction models have been proposed, learning good representation of items from multimodal features is still less investigated, considering an item in E-commerce usually contains multiple heterogeneous modalities. Previous works either concatenate the multiple modality features, that is equivalent to giving a fixed importance weight to each modality; or learn dynamic weights of different modalities for different items through technique like attention mechanism. However, a problem is that there usually exists common redundant information across multiple modalities. The dynamic weights of different modalities computed by using the redundant information may not correctly reflect the different importance of each modality. To address this, we explore the complementarity and redundancy of modalities by considering modality-specific and modality-invariant features differently. We propose a novel Multimodal Adversarial Representation Network (MARN) for the CTR prediction task. A multimodal attention network first calculates the weights of multiple modalities for each item according to its modality-specific features. Then a multimodal adversarial network learns modality-invariant representations where a double-discriminators strategy is introduced. Finally, we achieve the multimodal item representations by combining both modality-specific and modality-invariant representations. We conduct extensive experiments on both public and industrial datasets, and the proposed method consistently achieves remarkable improvements to the state-of-the-art methods. Moreover, the approach has been deployed in an operational E-commerce system and online A/B testing further demonstrates the effectiveness.

Multimodal sentiment analysis is a very actively growing field of research. A promising area of opportunity in this field is to improve the multimodal fusion mechanism. We present a novel feature fusion strategy that proceeds in a hierarchical fashion, first fusing the modalities two in two and only then fusing all three modalities. On multimodal sentiment analysis of individual utterances, our strategy outperforms conventional concatenation of features by 1%, which amounts to 5% reduction in error rate. On utterance-level multimodal sentiment analysis of multi-utterance video clips, for which current state-of-the-art techniques incorporate contextual information from other utterances of the same clip, our hierarchical fusion gives up to 2.4% (almost 10% error rate reduction) over currently used concatenation. The implementation of our method is publicly available in the form of open-source code.

北京阿比特科技有限公司