Twin-width is a width parameter introduced by Bonnet, Kim, Thomass\'e and Watrigant [FOCS'20, JACM'22], which has many structural and algorithmic applications. We prove that the twin-width of every graph embeddable in a surface of Euler genus $g$ is $18\sqrt{47g}+O(1)$, which is asymptotically best possible as it asymptotically differs from the lower bound by a constant multiplicative factor. Our proof also yields a quadratic time algorithm to find a corresponding contraction sequence. To prove the upper bound on twin-width of graphs embeddable in surfaces, we provide a stronger version of the Product Structure Theorem for graphs of Euler genus $g$ that asserts that every such graph is a subgraph of the strong product of a path and a graph with a tree-decomposition with all bags of size at most eight with a single exceptional bag of size $\max\{8,32g-27\}$.
Assouad-Nagata dimension addresses both large and small scale behaviors of metric spaces and is a refinement of Gromov's asymptotic dimension. A metric space $M$ is a minor-closed metric if there exists an (edge-)weighted graph $G$ in a fixed minor-closed family such that the underlying space of $M$ is the vertex-set of $G$, and the metric of $M$ is the distance function in $G$. Minor-closed metrics naturally arise when removing redundant edges of the underlying graphs by using edge-deletion and edge-contraction. In this paper, we determine the Assouad-Nagata dimension of every minor-closed metric. It is a common generalization of known results for the asymptotic dimension of $H$-minor free unweighted graphs and the Assouad-Nagata dimension of some 2-dimensional continuous spaces (e.g.\ complete Riemannian surfaces with finite Euler genus) and their corollaries.
We develop new tools to study landscapes in nonconvex optimization. Given one optimization problem, we pair it with another by smoothly parametrizing the domain. This is either for practical purposes (e.g., to use smooth optimization algorithms with good guarantees) or for theoretical purposes (e.g., to reveal that the landscape satisfies a strict saddle property). In both cases, the central question is: how do the landscapes of the two problems relate? More precisely: how do desirable points such as local minima and critical points in one problem relate to those in the other problem? A key finding in this paper is that these relations are often determined by the parametrization itself, and are almost entirely independent of the cost function. Accordingly, we introduce a general framework to study parametrizations by their effect on landscapes. The framework enables us to obtain new guarantees for an array of problems, some of which were previously treated on a case-by-case basis in the literature. Applications include: optimizing low-rank matrices and tensors through factorizations; solving semidefinite programs via the Burer-Monteiro approach; training neural networks by optimizing their weights and biases; and quotienting out symmetries.
In Generalized Linear Models (GLMs) it is assumed that there is a linear effect of the predictor variables on the outcome. However, this assumption is often too strict, because in many applications predictors have a nonlinear relation with the outcome. Optimal Scaling (OS) transformations combined with GLMs can deal with this type of relations. Transformations of the predictors have been integrated in GLMs before, e.g. in Generalized Additive Models. However, the OS methodology has several benefits. For example, the levels of categorical predictors are quantified directly, such that they can be included in the model without defining dummy variables. This approach enhances the interpretation and visualization of the effect of different levels on the outcome. Furthermore, monotonicity restrictions can be applied to the OS transformations such that the original ordering of the category values is preserved. This improves the interpretation of the effect and may prevent overfitting. The scaling level can be chosen for each individual predictor such that models can include mixed scaling levels. In this way, a suitable transformation can be found for each predictor in the model. The implementation of OS in logistic regression is demonstrated using three datasets that contain a binary outcome variable and a set of categorical and/or continuous predictor variables.
Learning classification tasks of (2^nx2^n) inputs typically consist of \le n (2x2) max-pooling (MP) operators along the entire feedforward deep architecture. Here we show, using the CIFAR-10 database, that pooling decisions adjacent to the last convolutional layer significantly enhance accuracies. In particular, average accuracies of the advanced-VGG with m layers (A-VGGm) architectures are 0.936, 0.940, 0.954, 0.955, and 0.955 for m=6, 8, 14, 13, and 16, respectively. The results indicate A-VGG8s' accuracy is superior to VGG16s', and that the accuracies of A-VGG13 and A-VGG16 are equal, and comparable to that of Wide-ResNet16. In addition, replacing the three fully connected (FC) layers with one FC layer, A-VGG6 and A-VGG14, or with several linear activation FC layers, yielded similar accuracies. These significantly enhanced accuracies stem from training the most influential input-output routes, in comparison to the inferior routes selected following multiple MP decisions along the deep architecture. In addition, accuracies are sensitive to the order of the non-commutative MP and average pooling operators adjacent to the output layer, varying the number and location of training routes. The results call for the reexamination of previously proposed deep architectures and their accuracies by utilizing the proposed pooling strategy adjacent to the output layer.
Quantum channel capacity is a fundamental quantity in order to understand how good can quantum information be transmitted or corrected when subjected to noise. However, it is generally not known how to compute such quantities, since the quantum channel coherent information is not additive for all channels, implying that it must be maximized over an unbounded number of channel uses. This leads to the phenomenon known as superadditivity, which refers to the fact that the regularized coherent information of $n$ channel uses exceeds one-shot coherent information. In this article, we study how the gain in quantum capacity of qudit depolarizing channels relates to the dimension of the systems considered. We make use of an argument based on the no-cloning bound in order to proof that the possible superadditive effects decrease as a function of the dimension for such family of channels. In addition, we prove that the capacity of the qudit depolarizing channel coincides with the coherent information when $d\rightarrow\infty$. We also discuss the private classical capacity and obain similar results. We conclude that when high dimensional qudits experiencing depolarizing noise are considered, the coherent information of the channel is not only an achievable rate but essentially the maximum possible rate for any quantum block code.
We combine the unbiased estimators in Rhee and Glynn (Operations Research: 63(5), 1026-1043, 2015) and the Heston model with stochastic interest rates. Specifically, we first develop a semi-exact log-Euler scheme for the Heston model with stochastic interest rates. Then, under mild assumptions, we show that the convergence rate in the $L^2$ norm is $O(h)$, where $h$ is the step size. The result applies to a large class of models, such as the Heston-Hull-While model, the Heston-CIR model and the Heston-Black-Karasinski model. Numerical experiments support our theoretical convergence rate.
In 1972 Mykkeltveit proved that the maximum number of vertex-disjoint cycles in the de Bruijn graphs of order $n$ is attained by the pure cycling register rule, as conjectured by Golomb. We generalize this result to the tensor product of the de Bruijn graph of order $n$ and a simple cycle of size $k$, when $n$ divides $k$ or vice versa. We also develop counting formulae for a large family of cycling register rules, including the linear register rules proposed by Golomb.
Graph Neural Networks (GNNs) are state-of-the-art models for performing prediction tasks on graphs. While existing GNNs have shown great performance on various tasks related to graphs, little attention has been paid to the scenario where out-of-distribution (OOD) nodes exist in the graph during training and inference. Borrowing the concept from CV and NLP, we define OOD nodes as nodes with labels unseen from the training set. Since a lot of networks are automatically constructed by programs, real-world graphs are often noisy and may contain nodes from unknown distributions. In this work, we define the problem of graph learning with out-of-distribution nodes. Specifically, we aim to accomplish two tasks: 1) detect nodes which do not belong to the known distribution and 2) classify the remaining nodes to be one of the known classes. We demonstrate that the connection patterns in graphs are informative for outlier detection, and propose Out-of-Distribution Graph Attention Network (OODGAT), a novel GNN model which explicitly models the interaction between different kinds of nodes and separate inliers from outliers during feature propagation. Extensive experiments show that OODGAT outperforms existing outlier detection methods by a large margin, while being better or comparable in terms of in-distribution classification.
Zero-shot Learning (ZSL), which aims to predict for those classes that have never appeared in the training data, has arisen hot research interests. The key of implementing ZSL is to leverage the prior knowledge of classes which builds the semantic relationship between classes and enables the transfer of the learned models (e.g., features) from training classes (i.e., seen classes) to unseen classes. However, the priors adopted by the existing methods are relatively limited with incomplete semantics. In this paper, we explore richer and more competitive prior knowledge to model the inter-class relationship for ZSL via ontology-based knowledge representation and semantic embedding. Meanwhile, to address the data imbalance between seen classes and unseen classes, we developed a generative ZSL framework with Generative Adversarial Networks (GANs). Our main findings include: (i) an ontology-enhanced ZSL framework that can be applied to different domains, such as image classification (IMGC) and knowledge graph completion (KGC); (ii) a comprehensive evaluation with multiple zero-shot datasets from different domains, where our method often achieves better performance than the state-of-the-art models. In particular, on four representative ZSL baselines of IMGC, the ontology-based class semantics outperform the previous priors e.g., the word embeddings of classes by an average of 12.4 accuracy points in the standard ZSL across two example datasets (see Figure 4).
Hashing has been widely used in approximate nearest search for large-scale database retrieval for its computation and storage efficiency. Deep hashing, which devises convolutional neural network architecture to exploit and extract the semantic information or feature of images, has received increasing attention recently. In this survey, several deep supervised hashing methods for image retrieval are evaluated and I conclude three main different directions for deep supervised hashing methods. Several comments are made at the end. Moreover, to break through the bottleneck of the existing hashing methods, I propose a Shadow Recurrent Hashing(SRH) method as a try. Specifically, I devise a CNN architecture to extract the semantic features of images and design a loss function to encourage similar images projected close. To this end, I propose a concept: shadow of the CNN output. During optimization process, the CNN output and its shadow are guiding each other so as to achieve the optimal solution as much as possible. Several experiments on dataset CIFAR-10 show the satisfying performance of SRH.