亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider the deformation of a geological structure with non-intersecting faults that can be represented by a layered system of viscoelastic bodies satisfying rate- and state-depending friction conditions along the common interfaces. We derive a mathematical model that contains classical Dieterich- and Ruina-type friction as special cases and accounts for possibly large tangential displacements. Semi-discretization in time by a Newmark scheme leads to a coupled system of non-smooth, convex minimization problems for rate and state to be solved in each time step. Additional spatial discretization by a mortar method and piecewise constant finite elements allows for the decoupling of rate and state by a fixed point iteration and efficient algebraic solution of the rate problem by truncated non-smooth Newton methods. Numerical experiments with a spring slider and a layered multiscale system illustrate the behavior of our model as well as the efficiency and reliability of the numerical solver.

相關內容

We explore analytically and numerically agglomeration driven by advection and localized source. The system is inhomogeneous in one dimension, viz. along the direction of advection. We analyze a simplified model with mass-independent advection velocity, diffusion coefficient, and reaction rates. We also examine a model with mass-dependent coefficients describing aggregation with sedimentation. For the simplified model, we obtain an exact solution for the stationary spatially dependent agglomerate densities. In the model describing aggregation with sedimentation, we report a new conservation law and develop a scaling theory for the densities. For numerical efficiency we exploit the low-rank approximation technique; this dramatically increases the computational speed and allows simulations of large systems. The numerical results are in excellent agreement with the predictions of our theory.

We propose and analyze an unfitted finite element method for solving elliptic problems on domains with curved boundaries and interfaces. The approximation space on the whole domain is obtained by the direct extension of the finite element space defined on interior elements, in the sense that there is no degree of freedom locating in boundary/interface elements. The boundary/jump conditions are imposed in a weak sense in the scheme. The method is shown to be stable without any mesh adjustment or any special stabilization. Optimal convergence rates under the $L^2$ norm and the energy norm are derived. Numerical results in both two and three dimensions are presented to illustrate the accuracy and the robustness of the method.

In logics for the strategic reasoning the main challenge is represented by their verification in contexts of imperfect information and perfect recall. In this work, we show a technique to approximate the verification of Alternating-time Temporal Logic (ATL*) under imperfect information and perfect recall, which is known to be undecidable. Given a model M and a formula $\varphi$, we propose a verification procedure that generates sub-models of M in which each sub-model M' satisfies a sub-formula $\varphi'$ of $\varphi$ and the verification of $\varphi'$ in M' is decidable. Then, we use CTL* model checking to provide a verification result of $\varphi$ on M. We prove that our procedure is in the same class of complexity of ATL* model checking under perfect information and perfect recall, we present a tool that implements our procedure, and provide experimental results.

The accuracy of binary classification systems is defined as the proportion of correct predictions - both positive and negative - made by a classification model or computational algorithm. A value between 0 (no accuracy) and 1 (perfect accuracy), the accuracy of a classification model is dependent on several factors, notably: the classification rule or algorithm used, the intrinsic characteristics of the tool used to do the classification, and the relative frequency of the elements being classified. Several accuracy metrics exist, each with its own advantages in different classification scenarios. In this manuscript, we show that relative to a perfect accuracy of 1, the positive prevalence threshold ($\phi_e$), a critical point of maximum curvature in the precision-prevalence curve, bounds the $F{_{\beta}}$ score between 1 and 1.8/1.5/1.2 for $\beta$ values of 0.5/1.0/2.0, respectively; the $F_1$ score between 1 and 1.5, and the Fowlkes-Mallows Index (FM) between 1 and $\sqrt{2} \approx 1.414$. We likewise describe a novel $negative$ prevalence threshold ($\phi_n$), the level of sharpest curvature for the negative predictive value-prevalence curve, such that $\phi_n$ $>$ $\phi_e$. The area between both these thresholds bounds the Matthews Correlation Coefficient (MCC) between $\sqrt{2}/2$ and $\sqrt{2}$. Conversely, the ratio of the maximum possible accuracy to that at any point below the prevalence threshold, $\phi_e$, goes to infinity with decreasing prevalence. Though applications are numerous, the ideas herein discussed may be used in computational complexity theory, artificial intelligence, and medical screening, amongst others. Where computational time is a limiting resource, attaining the prevalence threshold in binary classification systems may be sufficient to yield levels of accuracy comparable to that under maximum prevalence.

We explore analytically and numerically agglomeration driven by advection and localized source. The system is inhomogeneous in one dimension, viz. along the direction of advection. We analyze a simplified model with mass-independent advection velocity, diffusion coefficient, and reaction rates. We also examine a model with mass-dependent coefficients describing aggregation with sedimentation. For the simplified model, we obtain an exact solution for the stationary spatially dependent agglomerate densities. In the model describing aggregation with sedimentation, we report a new conservation law and develop a scaling theory for the densities. For numerical efficiency we exploit the low-rank approximation technique; this dramatically increases the computational speed and allows simulations of large systems. The numerical results are in excellent agreement with the predictions of our theory.

Optical wireless communication (OWC) over atmospheric turbulence and pointing errors is a well-studied topic. Still, there is limited research on signal fading due to random fog in an outdoor environment for terrestrial wireless communications. In this paper, we analyze the performance of a decode-and-forward (DF) relaying under the combined effect of random fog, pointing errors, and atmospheric turbulence with a negligible line-of-sight (LOS) direct link. We consider a generalized model for the end-to-end channel with independent and not identically distributed (i.ni.d.) pointing errors, random fog with Gamma distributed attenuation coefficient, double generalized gamma (DGG) atmospheric turbulence, and asymmetrical distance between the source and destination. We develop density and distribution functions of signal-to-noise ratio (SNR) under the combined effect of random fog, pointing errors, and atmospheric turbulence (FPT) channel and distribution function for the combined channel with random fog and pointing errors (FP). Using the derived statistical results, we present analytical expressions of the outage probability, average SNR, ergodic rate, and average bit error rate (BER) for both FP and FPT channels in terms of OWC system parameters. We also develop simplified and asymptotic performance analysis to provide insight on the system behavior analytically under various practically relevant scenarios. We demonstrate the mutual effects of channel impairments and pointing errors on the OWC performance, and show that the relaying system provides significant performance improvement compared with the direct transmissions, especially when pointing errors and fog becomes more pronounced.

This paper is dedicated to solving high-dimensional coupled FBSDEs with non-Lipschitz diffusion coefficients numerically. Under mild conditions, we provided a posterior estimate of the numerical solution that holds for any time duration. This posterior estimate validates the convergence of the recently proposed Deep BSDE method. In addition, we developed a numerical scheme based on the Deep BSDE method and presented numerical examples in financial markets to demonstrate the high performance.

Click-through rate (CTR) prediction plays a critical role in recommender systems and online advertising. The data used in these applications are multi-field categorical data, where each feature belongs to one field. Field information is proved to be important and there are several works considering fields in their models. In this paper, we proposed a novel approach to model the field information effectively and efficiently. The proposed approach is a direct improvement of FwFM, and is named as Field-matrixed Factorization Machines (FmFM, or $FM^2$). We also proposed a new explanation of FM and FwFM within the FmFM framework, and compared it with the FFM. Besides pruning the cross terms, our model supports field-specific variable dimensions of embedding vectors, which acts as soft pruning. We also proposed an efficient way to minimize the dimension while keeping the model performance. The FmFM model can also be optimized further by caching the intermediate vectors, and it only takes thousands of floating-point operations (FLOPs) to make a prediction. Our experiment results show that it can out-perform the FFM, which is more complex. The FmFM model's performance is also comparable to DNN models which require much more FLOPs in runtime.

Importance sampling is one of the most widely used variance reduction strategies in Monte Carlo rendering. In this paper, we propose a novel importance sampling technique that uses a neural network to learn how to sample from a desired density represented by a set of samples. Our approach considers an existing Monte Carlo rendering algorithm as a black box. During a scene-dependent training phase, we learn to generate samples with a desired density in the primary sample space of the rendering algorithm using maximum likelihood estimation. We leverage a recent neural network architecture that was designed to represent real-valued non-volume preserving ('Real NVP') transformations in high dimensional spaces. We use Real NVP to non-linearly warp primary sample space and obtain desired densities. In addition, Real NVP efficiently computes the determinant of the Jacobian of the warp, which is required to implement the change of integration variables implied by the warp. A main advantage of our approach is that it is agnostic of underlying light transport effects, and can be combined with many existing rendering techniques by treating them as a black box. We show that our approach leads to effective variance reduction in several practical scenarios.

In this work, we consider the distributed optimization of non-smooth convex functions using a network of computing units. We investigate this problem under two regularity assumptions: (1) the Lipschitz continuity of the global objective function, and (2) the Lipschitz continuity of local individual functions. Under the local regularity assumption, we provide the first optimal first-order decentralized algorithm called multi-step primal-dual (MSPD) and its corresponding optimal convergence rate. A notable aspect of this result is that, for non-smooth functions, while the dominant term of the error is in $O(1/\sqrt{t})$, the structure of the communication network only impacts a second-order term in $O(1/t)$, where $t$ is time. In other words, the error due to limits in communication resources decreases at a fast rate even in the case of non-strongly-convex objective functions. Under the global regularity assumption, we provide a simple yet efficient algorithm called distributed randomized smoothing (DRS) based on a local smoothing of the objective function, and show that DRS is within a $d^{1/4}$ multiplicative factor of the optimal convergence rate, where $d$ is the underlying dimension.

北京阿比特科技有限公司