亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Submodular optimization has become increasingly prominent in machine learning and fairness has drawn much attention. In this paper, we propose to study the fair $k$-submodular maximization problem and develop a $\frac{1}{3}$-approximation greedy algorithm with a running time of $\mathcal{O}(knB)$. To the best of our knowledge, our work is the first to incorporate fairness in the context of $k$-submodular maximization, and our theoretical guarantee matches the best-known $k$-submodular maximization results without fairness constraints. In addition, we have developed a faster threshold-based algorithm that achieves a $(\frac{1}{3} - \epsilon)$ approximation with $\mathcal{O}(\frac{kn}{\epsilon} \log \frac{B}{\epsilon})$ evaluations of the function $f$. Furthermore, for both algorithms, we provide approximation guarantees when the $k$-submodular function is not accessible but only can be approximately accessed. We have extensively validated our theoretical findings through empirical research and examined the practical implications of fairness. Specifically, we have addressed the question: ``What is the price of fairness?" through case studies on influence maximization with $k$ topics and sensor placement with $k$ types. The experimental results show that the fairness constraints do not significantly undermine the quality of solutions.

相關內容

With the widespread application of LLM-based dialogue systems in daily life, quality assurance has become more important than ever. Recent research has successfully introduced methods to identify unexpected behaviour in single-turn scenarios. However, multi-turn dialogue testing remains underexplored, with the Oracle problem in multi-turn testing posing a persistent challenge for dialogue system developers and researchers. In this paper, we propose MORTAR, a MetamORphic multi-TuRn diAlogue testing appRoach, which mitigates the test oracle problem in the assessment of LLM-based dialogue systems. MORTAR automates the generation of follow-up question-answer (QA) dialogue test cases with multiple dialogue-level perturbations and metamorphic relations. MORTAR employs a novel knowledge graph-based dialogue information model which effectively generates perturbed dialogue test datasets and detects bugs of multi-turn dialogue systems in a low-cost manner. The proposed approach does not require an LLM as a judge, eliminating potential of any biases in the evaluation step. According to the experiment results on multiple LLM-based dialogue systems and comparisons with single-turn metamorphic testing approaches, MORTAR explores more unique bugs in LLM-based dialogue systems, especially for severe bugs that MORTAR detects up to four times more unique bugs than the most effective existing metamorphic testing approach.

Quadrotors that can operate predictably in the presence of imperfect model knowledge and external disturbances are crucial in safety-critical applications. We present L1Quad, a control architecture that ensures uniformly bounded transient response of the quadrotor's uncertain dynamics on the special Euclidean group SE(3). By leveraging the geometric controller and the L1 adaptive controller, the L1Quad architecture provides a theoretically justified framework for the design and analysis of quadrotor's tracking controller in the presence of nonlinear (time- and state-dependent) uncertainties on both the translational and rotational dynamics. In addition, we validate the performance of the L1Quad architecture through extensive experiments for eleven types of uncertainties across various trajectories. The results demonstrate that the L1Quad can achieve consistently small tracking errors despite the uncertainties and disturbances and significantly outperforms existing state-of-the-art controllers.

Current PEFT methods for LLMs can achieve either high quality, efficient training, or scalable serving, but not all three simultaneously. To address this limitation, we investigate sparse fine-tuning and observe a remarkable improvement in generalization ability. Utilizing this key insight, we propose a family of Structured Sparse Fine-Tuning (S$^{2}$FT) methods for LLMs, which concurrently achieve state-of-the-art fine-tuning performance, training efficiency, and inference scalability. S$^{2}$FT accomplishes this by "selecting sparsely and computing densely". It selects a few heads and channels in the MHA and FFN modules for each Transformer block, respectively. Next, it co-permutes weight matrices on both sides of the coupled structures in LLMs to connect the selected components in each layer into a dense submatrix. Finally, S$^{2}$FT performs in-place gradient updates on all submatrices. Through theoretical analysis and empirical results, our method prevents forgetting while simplifying optimization, delivers SOTA performance on both commonsense and arithmetic reasoning with 4.6% and 1.3% average improvements compared to LoRA, and surpasses full FT by 11.5% when generalizing to various domains after instruction tuning. Using our partial backpropagation algorithm, S$^{2}$FT saves training memory up to 3$\times$ and improves latency by 1.5-2.7$\times$ compared to full FT, while delivering an average 10% improvement over LoRA on both metrics. We further demonstrate that the weight updates in S$^{2}$FT can be decoupled into adapters, enabling effective fusion, fast switch, and efficient parallelism for serving multiple fine-tuned models.

The number of independent sets in regular bipartite expander graphs can be efficiently approximated by expressing it as the partition function of a suitable polymer model and truncating its cluster expansion. While this approach has been extensively used for graphs, surprisingly little is known about analogous questions in the context of hypergraphs. In this work, we apply this method to asymptotically determine the number of independent sets in regular $k$-partite $k$-uniform hypergraphs which satisfy natural expansion properties. The resulting formula depends only on the local structure of the hypergraph, making it computationally efficient. In particular, we provide a simple closed-form expression for linear hypergraphs.

Intelligent robots need to interact with diverse objects across various environments. The appearance and state of objects frequently undergo complex transformations depending on the object properties, e.g., phase transitions. However, in the vision community, segmenting dynamic objects with phase transitions is overlooked. In light of this, we introduce the concept of phase in segmentation, which categorizes real-world objects based on their visual characteristics and potential morphological and appearance changes. Then, we present a new benchmark, Multi-Phase, Multi-Transition, and Multi-Scenery Video Object Segmentation (M$^3$-VOS), to verify the ability of models to understand object phases, which consists of 479 high-resolution videos spanning over 10 distinct everyday scenarios. It provides dense instance mask annotations that capture both object phases and their transitions. We evaluate state-of-the-art methods on M$^3$-VOS, yielding several key insights. Notably, current appearancebased approaches show significant room for improvement when handling objects with phase transitions. The inherent changes in disorder suggest that the predictive performance of the forward entropy-increasing process can be improved through a reverse entropy-reducing process. These findings lead us to propose ReVOS, a new plug-andplay model that improves its performance by reversal refinement. Our data and code will be publicly available at //zixuan-chen.github.io/M-cubeVOS.github.io/.

Clustering is one of the staples of data analysis and unsupervised learning. As such, clustering algorithms are often used on massive data sets, and they need to be extremely fast. We focus on the Euclidean $k$-median and $k$-means problems, two of the standard ways to model the task of clustering. For these, the go-to algorithm is $k$-means++, which yields an $O(\log k)$-approximation in time $\tilde O(nkd)$. While it is possible to improve either the approximation factor [Lattanzi and Sohler, ICML19] or the running time [Cohen-Addad et al., NeurIPS 20], it is unknown how precise a linear-time algorithm can be. In this paper, we almost answer this question by presenting an almost linear-time algorithm to compute a constant-factor approximation.

Evaluating the performance of classifiers is critical in machine learning, particularly in high-stakes applications where the reliability of predictions can significantly impact decision-making. Traditional performance measures, such as accuracy and F-score, often fail to account for the uncertainty inherent in classifier predictions, leading to potentially misleading assessments. This paper introduces the Certainty Ratio ($C_\rho$), a novel metric designed to quantify the contribution of confident (certain) versus uncertain predictions to any classification performance measure. By integrating the Probabilistic Confusion Matrix ($CM^\star$) and decomposing predictions into certainty and uncertainty components, $C_\rho$ provides a more comprehensive evaluation of classifier reliability. Experimental results across 21 datasets and multiple classifiers, including Decision Trees, Naive-Bayes, 3-Nearest Neighbors, and Random Forests, demonstrate that $C_\rho$ reveals critical insights that conventional metrics often overlook. These findings emphasize the importance of incorporating probabilistic information into classifier evaluation, offering a robust tool for researchers and practitioners seeking to improve model trustworthiness in complex environments.

Scene generation is crucial to many computer graphics applications. Recent advances in generative AI have streamlined sketch-to-image workflows, easing the workload for artists and designers in creating scene concept art. However, these methods often struggle for complex scenes with multiple detailed objects, sometimes missing small or uncommon instances. In this paper, we propose a Training-free Triplet Tuning for Sketch-to-Scene (T3-S2S) generation after reviewing the entire cross-attention mechanism. This scheme revitalizes the existing ControlNet model, enabling effective handling of multi-instance generations, involving prompt balance, characteristics prominence, and dense tuning. Specifically, this approach enhances keyword representation via the prompt balance module, reducing the risk of missing critical instances. It also includes a characteristics prominence module that highlights TopK indices in each channel, ensuring essential features are better represented based on token sketches. Additionally, it employs dense tuning to refine contour details in the attention map, compensating for instance-related regions. Experiments validate that our triplet tuning approach substantially improves the performance of existing sketch-to-image models. It consistently generates detailed, multi-instance 2D images, closely adhering to the input prompts and enhancing visual quality in complex multi-instance scenes. Code is available at //github.com/chaos-sun/t3s2s.git.

With the advances of data-driven machine learning research, a wide variety of prediction problems have been tackled. It has become critical to explore how machine learning and specifically deep learning methods can be exploited to analyse healthcare data. A major limitation of existing methods has been the focus on grid-like data; however, the structure of physiological recordings are often irregular and unordered which makes it difficult to conceptualise them as a matrix. As such, graph neural networks have attracted significant attention by exploiting implicit information that resides in a biological system, with interactive nodes connected by edges whose weights can be either temporal associations or anatomical junctions. In this survey, we thoroughly review the different types of graph architectures and their applications in healthcare. We provide an overview of these methods in a systematic manner, organized by their domain of application including functional connectivity, anatomical structure and electrical-based analysis. We also outline the limitations of existing techniques and discuss potential directions for future research.

Classical machine learning implicitly assumes that labels of the training data are sampled from a clean distribution, which can be too restrictive for real-world scenarios. However, statistical learning-based methods may not train deep learning models robustly with these noisy labels. Therefore, it is urgent to design Label-Noise Representation Learning (LNRL) methods for robustly training deep models with noisy labels. To fully understand LNRL, we conduct a survey study. We first clarify a formal definition for LNRL from the perspective of machine learning. Then, via the lens of learning theory and empirical study, we figure out why noisy labels affect deep models' performance. Based on the theoretical guidance, we categorize different LNRL methods into three directions. Under this unified taxonomy, we provide a thorough discussion of the pros and cons of different categories. More importantly, we summarize the essential components of robust LNRL, which can spark new directions. Lastly, we propose possible research directions within LNRL, such as new datasets, instance-dependent LNRL, and adversarial LNRL. Finally, we envision potential directions beyond LNRL, such as learning with feature-noise, preference-noise, domain-noise, similarity-noise, graph-noise, and demonstration-noise.

北京阿比特科技有限公司