Key to rich, dexterous manipulation in the real world is the ability to coordinate control across two hands. However, while the promise afforded by bimanual robotic systems is immense, constructing control policies for dual arm autonomous systems brings inherent difficulties. One such difficulty is the high-dimensionality of the bimanual action space, which adds complexity to both model-based and data-driven methods. We counteract this challenge by drawing inspiration from humans to propose a novel role assignment framework: a stabilizing arm holds an object in place to simplify the environment while an acting arm executes the task. We instantiate this framework with BimanUal Dexterity from Stabilization (BUDS), which uses a learned restabilizing classifier to alternate between updating a learned stabilization position to keep the environment unchanged, and accomplishing the task with an acting policy learned from demonstrations. We evaluate BUDS on four bimanual tasks of varying complexities on real-world robots, such as zipping jackets and cutting vegetables. Given only 20 demonstrations, BUDS achieves 76.9% task success across our task suite, and generalizes to out-of-distribution objects within a class with a 52.7% success rate. BUDS is 56.0% more successful than an unstructured baseline that instead learns a BC stabilizing policy due to the precision required of these complex tasks. Supplementary material and videos can be found at //sites.google.com/view/stabilizetoact .
Graph neural networks (GNNs) have shown advantages in graph-based analysis tasks. However, most existing methods have the homogeneity assumption and show poor performance on heterophilic graphs, where the linked nodes have dissimilar features and different class labels, and the semantically related nodes might be multi-hop away. To address this limitation, this paper presents GraphRARE, a general framework built upon node relative entropy and deep reinforcement learning, to strengthen the expressive capability of GNNs. An innovative node relative entropy, which considers node features and structural similarity, is used to measure mutual information between node pairs. In addition, to avoid the sub-optimal solutions caused by mixing useful information and noises of remote nodes, a deep reinforcement learning-based algorithm is developed to optimize the graph topology. This algorithm selects informative nodes and discards noisy nodes based on the defined node relative entropy. Extensive experiments are conducted on seven real-world datasets. The experimental results demonstrate the superiority of GraphRARE in node classification and its capability to optimize the original graph topology.
Integrated sensing and communication (ISAC) has the advantages of efficient spectrum utilization and low hardware cost. It is promising to be implemented in the fifth-generation-advanced (5G-A) and sixth-generation (6G) mobile communication systems, having the potential to be applied in intelligent applications requiring both communication and high-accurate sensing capabilities. As the fundamental technology of ISAC, ISAC signal directly impacts the performance of sensing and communication. This article systematically reviews the literature on ISAC signals from the perspective of mobile communication systems, including ISAC signal design, ISAC signal processing algorithms and ISAC signal optimization. We first review the ISAC signal design based on 5G, 5G-A and 6G mobile communication systems. Then, radar signal processing methods are reviewed for ISAC signals, mainly including the channel information matrix method, spectrum lines estimator method and super resolution method. In terms of signal optimization, we summarize peak-to-average power ratio (PAPR) optimization, interference management, and adaptive signal optimization for ISAC signals. This article may provide the guidelines for the research of ISAC signals in 5G-A and 6G mobile communication systems.
Neural Radiance Fields (NeRF) have demonstrated impressive potential in synthesizing novel views from dense input, however, their effectiveness is challenged when dealing with sparse input. Existing approaches that incorporate additional depth or semantic supervision can alleviate this issue to an extent. However, the process of supervision collection is not only costly but also potentially inaccurate, leading to poor performance and generalization ability in diverse scenarios. In our work, we introduce a novel model: the Collaborative Neural Radiance Fields (ColNeRF) designed to work with sparse input. The collaboration in ColNeRF includes both the cooperation between sparse input images and the cooperation between the output of the neural radiation field. Through this, we construct a novel collaborative module that aligns information from various views and meanwhile imposes self-supervised constraints to ensure multi-view consistency in both geometry and appearance. A Collaborative Cross-View Volume Integration module (CCVI) is proposed to capture complex occlusions and implicitly infer the spatial location of objects. Moreover, we introduce self-supervision of target rays projected in multiple directions to ensure geometric and color consistency in adjacent regions. Benefiting from the collaboration at the input and output ends, ColNeRF is capable of capturing richer and more generalized scene representation, thereby facilitating higher-quality results of the novel view synthesis. Extensive experiments demonstrate that ColNeRF outperforms state-of-the-art sparse input generalizable NeRF methods. Furthermore, our approach exhibits superiority in fine-tuning towards adapting to new scenes, achieving competitive performance compared to per-scene optimized NeRF-based methods while significantly reducing computational costs. Our code is available at: //github.com/eezkni/ColNeRF.
As blockchain technology becomes more and more popular, a typical financial scam, the Ponzi scheme, has also emerged in the blockchain platform Ethereum. This Ponzi scheme deployed through smart contracts, also known as the smart Ponzi scheme, has caused a lot of economic losses and negative impacts. Existing methods for detecting smart Ponzi schemes on Ethereum mainly rely on bytecode features, opcode features, account features, and transaction behavior features of smart contracts, which are unable to truly characterize the behavioral features of Ponzi schemes, and thus generally perform poorly in terms of detection accuracy and false alarm rates. In this paper, we propose SourceP, a method to detect smart Ponzi schemes on the Ethereum platform using pre-trained models and data flow, which only requires using the source code of smart contracts as features. SourceP reduces the difficulty of data acquisition and feature extraction of existing detection methods. Specifically, we first convert the source code of a smart contract into a data flow graph and then introduce a pre-trained model based on learning code representations to build a classification model to identify Ponzi schemes in smart contracts. The experimental results show that SourceP achieves 87.2\% recall and 90.7\% F-score for detecting smart Ponzi schemes within Ethereum's smart contract dataset, outperforming state-of-the-art methods in terms of performance and sustainability. We also demonstrate through additional experiments that pre-trained models and data flow play an important contribution to SourceP, as well as proving that SourceP has a good generalization ability.
Algorithmic predictions are increasingly used to inform the allocations of goods and interventions in the public sphere. In these domains, predictions serve as a means to an end. They provide stakeholders with insights into likelihood of future events as a means to improve decision making quality, and enhance social welfare. However, if maximizing welfare is the ultimate goal, prediction is only a small piece of the puzzle. There are various other policy levers a social planner might pursue in order to improve bottom-line outcomes, such as expanding access to available goods, or increasing the effect sizes of interventions. Given this broad range of design decisions, a basic question to ask is: What is the relative value of prediction in algorithmic decision making? How do the improvements in welfare arising from better predictions compare to those of other policy levers? The goal of our work is to initiate the formal study of these questions. Our main results are theoretical in nature. We identify simple, sharp conditions determining the relative value of prediction vis-\`a-vis expanding access, within several statistical models that are popular amongst quantitative social scientists. Furthermore, we illustrate how these theoretical insights may be used to guide the design of algorithmic decision making systems in practice.
Research on adversarial robustness is primarily focused on image and text data. Yet, many scenarios in which lack of robustness can result in serious risks, such as fraud detection, medical diagnosis, or recommender systems often do not rely on images or text but instead on tabular data. Adversarial robustness in tabular data poses two serious challenges. First, tabular datasets often contain categorical features, and therefore cannot be tackled directly with existing optimization procedures. Second, in the tabular domain, algorithms that are not based on deep networks are widely used and offer great performance, but algorithms to enhance robustness are tailored to neural networks (e.g. adversarial training). In this paper, we tackle both challenges. We present a method that allows us to train adversarially robust deep networks for tabular data and to transfer this robustness to other classifiers via universal robust embeddings tailored to categorical data. These embeddings, created using a bilevel alternating minimization framework, can be transferred to boosted trees or random forests making them robust without the need for adversarial training while preserving their high accuracy on tabular data. We show that our methods outperform existing techniques within a practical threat model suitable for tabular data.
Abuse in its various forms, including physical, psychological, verbal, sexual, financial, and cultural, has a negative impact on mental health. However, there are limited studies on applying natural language processing (NLP) in this field in Vietnam. Therefore, we aim to contribute by building a human-annotated Vietnamese dataset for detecting abusive content in Vietnamese narrative texts. We sourced these texts from VnExpress, Vietnam's popular online newspaper, where readers often share stories containing abusive content. Identifying and categorizing abusive spans in these texts posed significant challenges during dataset creation, but it also motivated our research. We experimented with lightweight baseline models by freezing PhoBERT and XLM-RoBERTa and using their hidden states in a BiLSTM to assess the complexity of the dataset. According to our experimental results, PhoBERT outperforms other models in both labeled and unlabeled abusive span detection tasks. These results indicate that it has the potential for future improvements.
Recently, Mutual Information (MI) has attracted attention in bounding the generalization error of Deep Neural Networks (DNNs). However, it is intractable to accurately estimate the MI in DNNs, thus most previous works have to relax the MI bound, which in turn weakens the information theoretic explanation for generalization. To address the limitation, this paper introduces a probabilistic representation of DNNs for accurately estimating the MI. Leveraging the proposed MI estimator, we validate the information theoretic explanation for generalization, and derive a tighter generalization bound than the state-of-the-art relaxations.
We consider the problem of explaining the predictions of graph neural networks (GNNs), which otherwise are considered as black boxes. Existing methods invariably focus on explaining the importance of graph nodes or edges but ignore the substructures of graphs, which are more intuitive and human-intelligible. In this work, we propose a novel method, known as SubgraphX, to explain GNNs by identifying important subgraphs. Given a trained GNN model and an input graph, our SubgraphX explains its predictions by efficiently exploring different subgraphs with Monte Carlo tree search. To make the tree search more effective, we propose to use Shapley values as a measure of subgraph importance, which can also capture the interactions among different subgraphs. To expedite computations, we propose efficient approximation schemes to compute Shapley values for graph data. Our work represents the first attempt to explain GNNs via identifying subgraphs explicitly and directly. Experimental results show that our SubgraphX achieves significantly improved explanations, while keeping computations at a reasonable level.
Knowledge graphs are important resources for many artificial intelligence tasks but often suffer from incompleteness. In this work, we propose to use pre-trained language models for knowledge graph completion. We treat triples in knowledge graphs as textual sequences and propose a novel framework named Knowledge Graph Bidirectional Encoder Representations from Transformer (KG-BERT) to model these triples. Our method takes entity and relation descriptions of a triple as input and computes scoring function of the triple with the KG-BERT language model. Experimental results on multiple benchmark knowledge graphs show that our method can achieve state-of-the-art performance in triple classification, link prediction and relation prediction tasks.