As the current detection solutions of distributed denial of service attacks (DDoS) need additional infrastructures to handle high aggregate data rates, they are not suitable for sensor networks or the Internet of Things. Besides, the security architecture of software-defined sensor networks needs to pay attention to the vulnerabilities of both software-defined networks and sensor networks. In this paper, we propose a network-aware automated machine learning (AutoML) framework which detects DDoS attacks in software-defined sensor networks. Our framework selects an ideal machine learning algorithm to detect DDoS attacks in network-constrained environments, using metrics such as variable traffic load, heterogeneous traffic rate, and detection time while preventing over-fitting. Our contributions are two-fold: (i) we first investigate the trade-off between the efficiency of ML algorithms and network/traffic state in the scope of DDoS detection. (ii) we design and implement a software architecture containing open-source network tools, with the deployment of multiple ML algorithms. Lastly, we show that under the denial of service attacks, our framework ensures the traffic packets are still delivered within the network with additional delays.
This manuscript enriches the framework of continuous normalizing flows (CNFs) within causal inference, primarily to augment the geometric properties of parametric submodels used in targeted maximum likelihood estimation (TMLE). By introducing an innovative application of CNFs, we construct a refined series of parametric submodels that enable a directed interpolation between the prior distribution $p_0$ and the empirical distribution $p_1$. This proposed methodology serves to optimize the semiparametric efficiency bound in causal inference by orchestrating CNFs to align with Wasserstein gradient flows. Our approach not only endeavors to minimize the mean squared error in the estimation but also imbues the estimators with geometric sophistication, thereby enhancing robustness against misspecification. This robustness is crucial, as it alleviates the dependence on the standard $n^{\frac{1}{4}}$ rate for a doubly-robust perturbation direction in TMLE. By incorporating robust optimization principles and differential geometry into the estimators, the developed geometry-aware CNFs represent a significant advancement in the pursuit of doubly robust causal inference.
Many high-dimensional data sets suffer from hidden confounding. When hidden confounders affect both the predictors and the response in a high-dimensional regression problem, standard methods lead to biased estimates. This paper substantially extends previous work on spectral deconfounding for high-dimensional linear models to the nonlinear setting and with this, establishes a proof of concept that spectral deconfounding is valid for general nonlinear models. Concretely, we propose an algorithm to estimate high-dimensional additive models in the presence of hidden dense confounding: arguably, this is a simple yet practically useful nonlinear scope. We prove consistency and convergence rates for our method and evaluate it on synthetic data and a genetic data set.
Gaussian process regression can flexibly represent the posterior distribution of an interest parameter given sufficient information on the likelihood. However, in some cases, we have little knowledge regarding the probability model. For example, when investing in a financial instrument, the probability model of cash flow is generally unknown. In this paper, we propose a novel framework called the likelihood-free Gaussian process (LFGP), which allows representation of the posterior distributions of interest parameters for scalable problems without directly setting their likelihood functions. The LFGP establishes clusters in which the value of the interest parameter can be considered approximately identical, and it approximates the likelihood of the interest parameter in each cluster to a Gaussian using the asymptotic normality of the maximum likelihood estimator. We expect that the proposed framework will contribute significantly to likelihood-free modeling, particularly by reducing the assumptions for the probability model and the computational costs for scalable problems.
Many approaches for optimizing decision making systems rely on gradient based methods requiring informative feedback from the environment. However, in the case where such feedback is sparse or uninformative, such approaches may result in poor performance. Derivative-free approaches such as Bayesian Optimization mitigate the dependency on the quality of gradient feedback, but are known to scale poorly in the high-dimension setting of complex decision making systems. This problem is exacerbated if the system requires interactions between several actors cooperating to accomplish a shared goal. To address the dimensionality challenge, we propose a compact multi-layered architecture modeling the dynamics of actor interactions through the concept of role. We introduce Hessian-aware Bayesian Optimization to efficiently optimize the multi-layered architecture parameterized by a large number of parameters, and give the first improved regret bound in additive high-dimensional Bayesian Optimization since Mutny & Krause (2018). Our approach shows strong empirical results under malformed or sparse reward.
Distributed representations provide a vector space that captures meaningful relationships between data instances. The distributed nature of these representations, however, entangles together multiple attributes or concepts of data instances (e.g., the topic or sentiment of a text, characteristics of the author (age, gender, etc), etc). Recent work has proposed the task of concept erasure, in which rather than making a concept predictable, the goal is to remove an attribute from distributed representations while retaining other information from the original representation space as much as possible. In this paper, we propose a new distance metric learning-based objective, the Kernelized Rate-Distortion Maximizer (KRaM), for performing concept erasure. KRaM fits a transformation of representations to match a specified distance measure (defined by a labeled concept to erase) using a modified rate-distortion function. Specifically, KRaM's objective function aims to make instances with similar concept labels dissimilar in the learned representation space while retaining other information. We find that optimizing KRaM effectively erases various types of concepts: categorical, continuous, and vector-valued variables from data representations across diverse domains. We also provide a theoretical analysis of several properties of KRaM's objective. To assess the quality of the learned representations, we propose an alignment score to evaluate their similarity with the original representation space. Additionally, we conduct experiments to showcase KRaM's efficacy in various settings, from erasing binary gender variables in word embeddings to vector-valued variables in GPT-3 representations.
Vast amount of data generated from networks of sensors, wearables, and the Internet of Things (IoT) devices underscores the need for advanced modeling techniques that leverage the spatio-temporal structure of decentralized data due to the need for edge computation and licensing (data access) issues. While federated learning (FL) has emerged as a framework for model training without requiring direct data sharing and exchange, effectively modeling the complex spatio-temporal dependencies to improve forecasting capabilities still remains an open problem. On the other hand, state-of-the-art spatio-temporal forecasting models assume unfettered access to the data, neglecting constraints on data sharing. To bridge this gap, we propose a federated spatio-temporal model -- Cross-Node Federated Graph Neural Network (CNFGNN) -- which explicitly encodes the underlying graph structure using graph neural network (GNN)-based architecture under the constraint of cross-node federated learning, which requires that data in a network of nodes is generated locally on each node and remains decentralized. CNFGNN operates by disentangling the temporal dynamics modeling on devices and spatial dynamics on the server, utilizing alternating optimization to reduce the communication cost, facilitating computations on the edge devices. Experiments on the traffic flow forecasting task show that CNFGNN achieves the best forecasting performance in both transductive and inductive learning settings with no extra computation cost on edge devices, while incurring modest communication cost.
In semi-supervised domain adaptation, a few labeled samples per class in the target domain guide features of the remaining target samples to aggregate around them. However, the trained model cannot produce a highly discriminative feature representation for the target domain because the training data is dominated by labeled samples from the source domain. This could lead to disconnection between the labeled and unlabeled target samples as well as misalignment between unlabeled target samples and the source domain. In this paper, we propose a novel approach called Cross-domain Adaptive Clustering to address this problem. To achieve both inter-domain and intra-domain adaptation, we first introduce an adversarial adaptive clustering loss to group features of unlabeled target data into clusters and perform cluster-wise feature alignment across the source and target domains. We further apply pseudo labeling to unlabeled samples in the target domain and retain pseudo-labels with high confidence. Pseudo labeling expands the number of ``labeled" samples in each class in the target domain, and thus produces a more robust and powerful cluster core for each class to facilitate adversarial learning. Extensive experiments on benchmark datasets, including DomainNet, Office-Home and Office, demonstrate that our proposed approach achieves the state-of-the-art performance in semi-supervised domain adaptation.
Knowledge graph embedding, which aims to represent entities and relations as low dimensional vectors (or matrices, tensors, etc.), has been shown to be a powerful technique for predicting missing links in knowledge graphs. Existing knowledge graph embedding models mainly focus on modeling relation patterns such as symmetry/antisymmetry, inversion, and composition. However, many existing approaches fail to model semantic hierarchies, which are common in real-world applications. To address this challenge, we propose a novel knowledge graph embedding model---namely, Hierarchy-Aware Knowledge Graph Embedding (HAKE)---which maps entities into the polar coordinate system. HAKE is inspired by the fact that concentric circles in the polar coordinate system can naturally reflect the hierarchy. Specifically, the radial coordinate aims to model entities at different levels of the hierarchy, and entities with smaller radii are expected to be at higher levels; the angular coordinate aims to distinguish entities at the same level of the hierarchy, and these entities are expected to have roughly the same radii but different angles. Experiments demonstrate that HAKE can effectively model the semantic hierarchies in knowledge graphs, and significantly outperforms existing state-of-the-art methods on benchmark datasets for the link prediction task.
Multivariate time series forecasting is extensively studied throughout the years with ubiquitous applications in areas such as finance, traffic, environment, etc. Still, concerns have been raised on traditional methods for incapable of modeling complex patterns or dependencies lying in real word data. To address such concerns, various deep learning models, mainly Recurrent Neural Network (RNN) based methods, are proposed. Nevertheless, capturing extremely long-term patterns while effectively incorporating information from other variables remains a challenge for time-series forecasting. Furthermore, lack-of-explainability remains one serious drawback for deep neural network models. Inspired by Memory Network proposed for solving the question-answering task, we propose a deep learning based model named Memory Time-series network (MTNet) for time series forecasting. MTNet consists of a large memory component, three separate encoders, and an autoregressive component to train jointly. Additionally, the attention mechanism designed enable MTNet to be highly interpretable. We can easily tell which part of the historic data is referenced the most.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.