亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The exponential growth of scientific literature has resulted in information overload, challenging researchers to effectively synthesize relevant publications. This paper explores the integration of traditional reference management software with advanced computational techniques, including Large Language Models and Retrieval-Augmented Generation. We introduce PyZoBot, an AI-driven platform developed in Python, incorporating Zoteros reference management with OpenAIs sophisticated LLMs. PyZoBot streamlines knowledge extraction and synthesis from extensive human-curated scientific literature databases. It demonstrates proficiency in handling complex natural language queries, integrating data from multiple sources, and meticulously presenting references to uphold research integrity and facilitate further exploration. By leveraging LLMs, RAG, and human expertise through a curated library, PyZoBot offers an effective solution to manage information overload and keep pace with rapid scientific advancements. The development of such AI-enhanced tools promises significant improvements in research efficiency and effectiveness across various disciplines.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · · 操作 · 樣例 · 置信度 ·
2024 年 6 月 27 日

Mining information from graph databases is becoming overly important. To approach this problem, current methods focus on identifying subgraphs with specific topologies; as of today, no work has been focused on expressing jointly the syntax and semantics of mining operations over rich property graphs. We define MINE GRAPH RULE, a new operator for mining association rules from graph databases, by extending classical approaches used in relational databases and exploited by recommending systems. We describe the syntax and semantics of the operator, which is based on measuring the support and confidence of each rule, and then we provide several examples of increasing complexity on top of a realistic example; our operator embeds Cypher for expressing the mining conditions. MINE GRAPH RULE is implemented on top of Neo4j, the most successful graph database system; it takes advantage of built-in optimizations of the Neo4j engine, as well as optimizations that are defined in the context of relational association rules. Our implementation is available as a portable Neo4j plugin. At the end of our paper, we show the execution performance in a variety of settings, by varying the operators, the size of the graph, the ratio between node types, the method for creating relationships, and maximum support and confidence.

Empathetic response generation is a desirable aspect of conversational agents, crucial for facilitating engaging and emotionally intelligent multi-turn conversations between humans and machines. Leveraging large language models for this task has shown promising results, yet challenges persist in ensuring both the empathetic quality of the responses and retention of the generalization performance of the models. In this paper, we propose a novel approach where we construct theory-driven preference datasets and use them to align LLMs with preference optimization algorithms to address these challenges. To measure empathetic response generation, we employ the EmpatheticDialogues dataset, assessing empathy with the diff-EPITOME and BERTscore metrics, and evaluate the generalization performance on the MMLU benchmark. We make all datasets, source code, and models publicly available.

Today, scientific research is increasingly data-centric and compute-intensive, relying on data and models across distributed sources. However, it still faces challenges in the traditional cooperation mode, due to the high storage and computing cost, geo-location barriers, and local confidentiality regulations. The Jupyter environment has recently emerged and evolved as a vital virtual research environment for scientific computing, which researchers can use to scale computational analyses up to larger datasets and high-performance computing resources. Nevertheless, existing approaches lack robust support of a decentralized cooperation mode to unlock the full potential of decentralized collaborative scientific research, e.g., seamlessly secure data sharing. In this work, we change the basic structure and legacy norms of current research environments via the seamless integration of Jupyter with Ethereum blockchain capabilities. As such, it creates a Decentralized Virtual Research Environment (D-VRE) from private computational notebooks to decentralized collaborative research ecosystem. We propose a novel architecture for the D-VRE and prototype some essential D-VRE elements for enabling secure data sharing with decentralized identity, user-centric agreement-making, membership, and research asset management. To validate our method, we conducted an experimental study to test all functionalities of D-VRE smart contracts and their gas consumption. In addition, we deployed the D-VRE prototype on a test net of the Ethereum blockchain for demonstration. The feedback from the studies showcases the current prototype's usability, ease of use, and potential and suggests further improvements.

Despite extensive research on adversarial training strategies to improve robustness, the decisions of even the most robust deep learning models can still be quite sensitive to imperceptible perturbations, creating serious risks when deploying them for high-stakes real-world applications. While detecting such cases may be critical, evaluating a model's vulnerability at a per-instance level using adversarial attacks is computationally too intensive and unsuitable for real-time deployment scenarios. The input space margin is the exact score to detect non-robust samples and is intractable for deep neural networks. This paper introduces the concept of margin consistency -- a property that links the input space margins and the logit margins in robust models -- for efficient detection of vulnerable samples. First, we establish that margin consistency is a necessary and sufficient condition to use a model's logit margin as a score for identifying non-robust samples. Next, through comprehensive empirical analysis of various robustly trained models on CIFAR10 and CIFAR100 datasets, we show that they indicate strong margin consistency with a strong correlation between their input space margins and the logit margins. Then, we show that we can effectively use the logit margin to confidently detect brittle decisions with such models and accurately estimate robust accuracy on an arbitrarily large test set by estimating the input margins only on a small subset. Finally, we address cases where the model is not sufficiently margin-consistent by learning a pseudo-margin from the feature representation. Our findings highlight the potential of leveraging deep representations to efficiently assess adversarial vulnerability in deployment scenarios.

Automating the annotation of scanned documents is challenging, requiring a balance between computational efficiency and accuracy. DocParseNet addresses this by combining deep learning and multi-modal learning to process both text and visual data. This model goes beyond traditional OCR and semantic segmentation, capturing the interplay between text and images to preserve contextual nuances in complex document structures. Our evaluations show that DocParseNet significantly outperforms conventional models, achieving mIoU scores of 49.12 on validation and 49.78 on the test set. This reflects a 58% accuracy improvement over state-of-the-art baseline models and an 18% gain compared to the UNext baseline. Remarkably, DocParseNet achieves these results with only 2.8 million parameters, reducing the model size by approximately 25 times and speeding up training by 5 times compared to other models. These metrics, coupled with a computational efficiency of 0.034 TFLOPs (BS=1), highlight DocParseNet's high performance in document annotation. The model's adaptability and scalability make it well-suited for real-world corporate document processing applications. The code is available at //github.com/ahmad-shirazi/DocParseNet

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

The incredible development of federated learning (FL) has benefited various tasks in the domains of computer vision and natural language processing, and the existing frameworks such as TFF and FATE has made the deployment easy in real-world applications. However, federated graph learning (FGL), even though graph data are prevalent, has not been well supported due to its unique characteristics and requirements. The lack of FGL-related framework increases the efforts for accomplishing reproducible research and deploying in real-world applications. Motivated by such strong demand, in this paper, we first discuss the challenges in creating an easy-to-use FGL package and accordingly present our implemented package FederatedScope-GNN (FS-G), which provides (1) a unified view for modularizing and expressing FGL algorithms; (2) comprehensive DataZoo and ModelZoo for out-of-the-box FGL capability; (3) an efficient model auto-tuning component; and (4) off-the-shelf privacy attack and defense abilities. We validate the effectiveness of FS-G by conducting extensive experiments, which simultaneously gains many valuable insights about FGL for the community. Moreover, we employ FS-G to serve the FGL application in real-world E-commerce scenarios, where the attained improvements indicate great potential business benefits. We publicly release FS-G, as submodules of FederatedScope, at //github.com/alibaba/FederatedScope to promote FGL's research and enable broad applications that would otherwise be infeasible due to the lack of a dedicated package.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

A fundamental goal of scientific research is to learn about causal relationships. However, despite its critical role in the life and social sciences, causality has not had the same importance in Natural Language Processing (NLP), which has traditionally placed more emphasis on predictive tasks. This distinction is beginning to fade, with an emerging area of interdisciplinary research at the convergence of causal inference and language processing. Still, research on causality in NLP remains scattered across domains without unified definitions, benchmark datasets and clear articulations of the remaining challenges. In this survey, we consolidate research across academic areas and situate it in the broader NLP landscape. We introduce the statistical challenge of estimating causal effects, encompassing settings where text is used as an outcome, treatment, or as a means to address confounding. In addition, we explore potential uses of causal inference to improve the performance, robustness, fairness, and interpretability of NLP models. We thus provide a unified overview of causal inference for the computational linguistics community.

Modeling multivariate time series has long been a subject that has attracted researchers from a diverse range of fields including economics, finance, and traffic. A basic assumption behind multivariate time series forecasting is that its variables depend on one another but, upon looking closely, it is fair to say that existing methods fail to fully exploit latent spatial dependencies between pairs of variables. In recent years, meanwhile, graph neural networks (GNNs) have shown high capability in handling relational dependencies. GNNs require well-defined graph structures for information propagation which means they cannot be applied directly for multivariate time series where the dependencies are not known in advance. In this paper, we propose a general graph neural network framework designed specifically for multivariate time series data. Our approach automatically extracts the uni-directed relations among variables through a graph learning module, into which external knowledge like variable attributes can be easily integrated. A novel mix-hop propagation layer and a dilated inception layer are further proposed to capture the spatial and temporal dependencies within the time series. The graph learning, graph convolution, and temporal convolution modules are jointly learned in an end-to-end framework. Experimental results show that our proposed model outperforms the state-of-the-art baseline methods on 3 of 4 benchmark datasets and achieves on-par performance with other approaches on two traffic datasets which provide extra structural information.

北京阿比特科技有限公司