This paper presents the details of our system designed for the Task 1 of Multimodal Information Based Speech Processing (MISP) Challenge 2021. The purpose of Task 1 is to leverage both audio and video information to improve the environmental robustness of far-field wake word spotting. In the proposed system, firstly, we take advantage of speech enhancement algorithms such as beamforming and weighted prediction error (WPE) to address the multi-microphone conversational audio. Secondly, several data augmentation techniques are applied to simulate a more realistic far-field scenario. For the video information, the provided region of interest (ROI) is used to obtain visual representation. Then the multi-layer CNN is proposed to learn audio and visual representations, and these representations are fed into our two-branch attention-based network which can be employed for fusion, such as transformer and conformed. The focal loss is used to fine-tune the model and improve the performance significantly. Finally, multiple trained models are integrated by casting vote to achieve our final 0.091 score.
Visual grounding is a task to locate the target indicated by a natural language expression. Existing methods extend the generic object detection framework to this problem. They base the visual grounding on the features from pre-generated proposals or anchors, and fuse these features with the text embeddings to locate the target mentioned by the text. However, modeling the visual features from these predefined locations may fail to fully exploit the visual context and attribute information in the text query, which limits their performance. In this paper, we propose a transformer-based framework for accurate visual grounding by establishing text-conditioned discriminative features and performing multi-stage cross-modal reasoning. Specifically, we develop a visual-linguistic verification module to focus the visual features on regions relevant to the textual descriptions while suppressing the unrelated areas. A language-guided feature encoder is also devised to aggregate the visual contexts of the target object to improve the object's distinctiveness. To retrieve the target from the encoded visual features, we further propose a multi-stage cross-modal decoder to iteratively speculate on the correlations between the image and text for accurate target localization. Extensive experiments on five widely used datasets validate the efficacy of our proposed components and demonstrate state-of-the-art performance. Our code is public at //github.com/yangli18/VLTVG.
In this thesis, I investigated and enhanced the visual counting task, which automatically estimates the number of objects in still images or video frames. Recently, due to the growing interest in it, several CNN-based solutions have been suggested by the scientific community. These artificial neural networks provide a way to automatically learn effective representations from raw visual data and can be successfully employed to address typical challenges characterizing this task, such as different illuminations and object scales. But apart from these difficulties, I targeted some other crucial limitations in the adoption of CNNs, proposing solutions that I experimentally evaluated in the context of the counting task which turns out to be particularly affected by these shortcomings. In particular, I tackled the problem related to the lack of data needed for training current CNN-based solutions. Given that the budget for labeling is limited, data scarcity still represents an open problem, particularly evident in tasks such as the counting one, where the objects to be labeled are thousands per image. Specifically, I introduced synthetic datasets gathered from virtual environments, where the training labels are automatically collected. I proposed Domain Adaptation strategies aiming at mitigating the domain gap existing between the training and test data distributions. I presented a counting strategy where I took advantage of the redundant information characterizing datasets labeled by multiple annotators. Moreover, I tackled the engineering challenges coming out of the adoption of CNN techniques in environments with limited power resources. I introduced solutions for counting vehicles directly onboard embedded vision systems. Finally, I designed an embedded modular Computer Vision-based system that can carry out several tasks to help monitor individual and collective human safety rules.
Despite the recent progress in deep learning, most approaches still go for a silo-like solution, focusing on learning each task in isolation: training a separate neural network for each individual task. Many real-world problems, however, call for a multi-modal approach and, therefore, for multi-tasking models. Multi-task learning (MTL) aims to leverage useful information across tasks to improve the generalization capability of a model. This thesis is concerned with multi-task learning in the context of computer vision. First, we review existing approaches for MTL. Next, we propose several methods that tackle important aspects of multi-task learning. The proposed methods are evaluated on various benchmarks. The results show several advances in the state-of-the-art of multi-task learning. Finally, we discuss several possibilities for future work.
Dynamic attention mechanism and global modeling ability make Transformer show strong feature learning ability. In recent years, Transformer has become comparable to CNNs methods in computer vision. This review mainly investigates the current research progress of Transformer in image and video applications, which makes a comprehensive overview of Transformer in visual learning understanding. First, the attention mechanism is reviewed, which plays an essential part in Transformer. And then, the visual Transformer model and the principle of each module are introduced. Thirdly, the existing Transformer-based models are investigated, and their performance is compared in visual learning understanding applications. Three image tasks and two video tasks of computer vision are investigated. The former mainly includes image classification, object detection, and image segmentation. The latter contains object tracking and video classification. It is significant for comparing different models' performance in various tasks on several public benchmark data sets. Finally, ten general problems are summarized, and the developing prospects of the visual Transformer are given in this review.
Transformer, an attention-based encoder-decoder architecture, has revolutionized the field of natural language processing. Inspired by this significant achievement, some pioneering works have recently been done on adapting Transformerliked architectures to Computer Vision (CV) fields, which have demonstrated their effectiveness on various CV tasks. Relying on competitive modeling capability, visual Transformers have achieved impressive performance on multiple benchmarks such as ImageNet, COCO, and ADE20k as compared with modern Convolution Neural Networks (CNN). In this paper, we have provided a comprehensive review of over one hundred different visual Transformers for three fundamental CV tasks (classification, detection, and segmentation), where a taxonomy is proposed to organize these methods according to their motivations, structures, and usage scenarios. Because of the differences in training settings and oriented tasks, we have also evaluated these methods on different configurations for easy and intuitive comparison instead of only various benchmarks. Furthermore, we have revealed a series of essential but unexploited aspects that may empower Transformer to stand out from numerous architectures, e.g., slack high-level semantic embeddings to bridge the gap between visual and sequential Transformers. Finally, three promising future research directions are suggested for further investment.
Named entity recognition (NER) in Chinese is essential but difficult because of the lack of natural delimiters. Therefore, Chinese Word Segmentation (CWS) is usually considered as the first step for Chinese NER. However, models based on word-level embeddings and lexicon features often suffer from segmentation errors and out-of-vocabulary (OOV) words. In this paper, we investigate a Convolutional Attention Network called CAN for Chinese NER, which consists of a character-based convolutional neural network (CNN) with local-attention layer and a gated recurrent unit (GRU) with global self-attention layer to capture the information from adjacent characters and sentence contexts. Also, compared to other models, not depending on any external resources like lexicons and employing small size of char embeddings make our model more practical. Extensive experimental results show that our approach outperforms state-of-the-art methods without word embedding and external lexicon resources on different domain datasets including Weibo, MSRA and Chinese Resume NER dataset.
It is always well believed that modeling relationships between objects would be helpful for representing and eventually describing an image. Nevertheless, there has not been evidence in support of the idea on image description generation. In this paper, we introduce a new design to explore the connections between objects for image captioning under the umbrella of attention-based encoder-decoder framework. Specifically, we present Graph Convolutional Networks plus Long Short-Term Memory (dubbed as GCN-LSTM) architecture that novelly integrates both semantic and spatial object relationships into image encoder. Technically, we build graphs over the detected objects in an image based on their spatial and semantic connections. The representations of each region proposed on objects are then refined by leveraging graph structure through GCN. With the learnt region-level features, our GCN-LSTM capitalizes on LSTM-based captioning framework with attention mechanism for sentence generation. Extensive experiments are conducted on COCO image captioning dataset, and superior results are reported when comparing to state-of-the-art approaches. More remarkably, GCN-LSTM increases CIDEr-D performance from 120.1% to 128.7% on COCO testing set.
We propose a novel attention gate (AG) model for medical imaging that automatically learns to focus on target structures of varying shapes and sizes. Models trained with AGs implicitly learn to suppress irrelevant regions in an input image while highlighting salient features useful for a specific task. This enables us to eliminate the necessity of using explicit external tissue/organ localisation modules of cascaded convolutional neural networks (CNNs). AGs can be easily integrated into standard CNN architectures such as the U-Net model with minimal computational overhead while increasing the model sensitivity and prediction accuracy. The proposed Attention U-Net architecture is evaluated on two large CT abdominal datasets for multi-class image segmentation. Experimental results show that AGs consistently improve the prediction performance of U-Net across different datasets and training sizes while preserving computational efficiency. The code for the proposed architecture is publicly available.
Deep learning has yielded state-of-the-art performance on many natural language processing tasks including named entity recognition (NER). However, this typically requires large amounts of labeled data. In this work, we demonstrate that the amount of labeled training data can be drastically reduced when deep learning is combined with active learning. While active learning is sample-efficient, it can be computationally expensive since it requires iterative retraining. To speed this up, we introduce a lightweight architecture for NER, viz., the CNN-CNN-LSTM model consisting of convolutional character and word encoders and a long short term memory (LSTM) tag decoder. The model achieves nearly state-of-the-art performance on standard datasets for the task while being computationally much more efficient than best performing models. We carry out incremental active learning, during the training process, and are able to nearly match state-of-the-art performance with just 25\% of the original training data.
In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.