亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

It is well-known that the spacetime diagrams of some cellular automata have a fractal structure: for instance Pascal's triangle modulo 2 generates a Sierpi\'nski triangle. It has been shown that such patterns can occur when the alphabet is endowed with the structure of an Abelian group, provided the cellular automaton is a morphism with respect to this structure. The spacetime diagram then has a property related to $k$-automaticity. We show that this condition can be relaxed from an Abelian group to a commutative monoid, and that in this case the spacetime diagrams still exhibit the same regularity.

相關內容

Group一直是研究計算機支持的合作工作、人機交互、計算機支持的協作學習和社會技術研究的主要場所。該會議將社會科學、計算機科學、工程、設計、價值觀以及其他與小組工作相關的多個不同主題的工作結合起來,并進行了廣泛的概念化。官網鏈接: · 控制器 · Analysis · 拉格朗日乘子 · Better ·
2023 年 8 月 24 日

We present new Dirichlet-Neumann and Neumann-Dirichlet algorithms with a time domain decomposition applied to unconstrained parabolic optimal control problems. After a spatial semi-discretization, we use the Lagrange multiplier approach to derive a coupled forward-backward optimality system, which can then be solved using a time domain decomposition. Due to the forward-backward structure of the optimality system, three variants can be found for the Dirichlet-Neumann and Neumann-Dirichlet algorithms. We analyze their convergence behavior and determine the optimal relaxation parameter for each algorithm. Our analysis reveals that the most natural algorithms are actually only good smoothers, and there are better choices which lead to efficient solvers. We illustrate our analysis with numerical experiments.

We bring in here a novel algebraic approach for attacking the McEliece cryptosystem. It consists in introducing a subspace of matrices representing quadratic forms. Those are associated with quadratic relationships for the component-wise product in the dual of the code used in the cryptosystem. Depending on the characteristic of the code field, this space of matrices consists only of symmetric matrices or skew-symmetric matrices. This matrix space is shown to contain unusually low-rank matrices (rank $2$ or $3$ depending on the characteristic) which reveal the secret polynomial structure of the code. Finding such matrices can then be used to recover the secret key of the scheme. We devise a dedicated approach in characteristic $2$ consisting in using a Gr\"obner basis modeling that a skew-symmetric matrix is of rank $2$. This allows to analyze the complexity of solving the corresponding algebraic system with Gr\"obner bases techniques. This computation behaves differently when applied to the skew-symmetric matrix space associated with a random code rather than with a Goppa or an alternant code. This gives a distinguisher of the latter code family. We give a bound on its complexity which turns out to interpolate nicely between polynomial and exponential depending on the code parameters. A distinguisher for alternant/Goppa codes was already known [FGO+11]. It is of polynomial complexity but works only in a narrow parameter regime. This new distinguisher is also polynomial for the parameter regime necessary for [FGO+11] but contrarily to the previous one is able to operate for virtually all code parameters relevant to cryptography. Moreover, we use this matrix space to find a polynomial time attack of the McEliece cryptosystem provided that the Goppa code is distinguishable by the method of [FGO+11] and its degree is less than $q-1$, where $q$ is the alphabet size of the code.

Geometric quantiles are location parameters which extend classical univariate quantiles to normed spaces (possibly infinite-dimensional) and which include the geometric median as a special case. The infinite-dimensional setting is highly relevant in the modeling and analysis of functional data, as well as for kernel methods. We begin by providing new results on the existence and uniqueness of geometric quantiles. Estimation is then performed with an approximate M-estimator and we investigate its large-sample properties in infinite dimension. When the population quantile is not uniquely defined, we leverage the theory of variational convergence to obtain asymptotic statements on subsequences in the weak topology. When there is a unique population quantile, we show that the estimator is consistent in the norm topology for a wide range of Banach spaces including every separable uniformly convex space. In separable Hilbert spaces, we establish weak Bahadur-Kiefer representations of the estimator, from which $\sqrt n$-asymptotic normality follows.

Neural dynamical systems with stable attractor structures, such as point attractors and continuous attractors, are hypothesized to underlie meaningful temporal behavior that requires working memory. However, working memory may not support useful learning signals necessary to adapt to changes in the temporal structure of the environment. We show that in addition to the continuous attractors that are widely implicated, periodic and quasi-periodic attractors can also support learning arbitrarily long temporal relationships. Unlike the continuous attractors that suffer from the fine-tuning problem, the less explored quasi-periodic attractors are uniquely qualified for learning to produce temporally structured behavior. Our theory has broad implications for the design of artificial learning systems and makes predictions about observable signatures of biological neural dynamics that can support temporal dependence learning and working memory. Based on our theory, we developed a new initialization scheme for artificial recurrent neural networks that outperforms standard methods for tasks that require learning temporal dynamics. Moreover, we propose a robust recurrent memory mechanism for integrating and maintaining head direction without a ring attractor.

Assouad-Nagata dimension addresses both large and small scale behaviors of metric spaces and is a refinement of Gromov's asymptotic dimension. A metric space $M$ is a minor-closed metric if there exists an (edge)-weighted graph $G$ in a fixed minor-closed family such that the underlying space of $M$ is the vertex-set of $G$, and the metric of $M$ is the distance function in $G$. Minor-closed metrics naturally arise when removing redundant edges of the underlying graphs by using edge-deletion and edge-contraction. In this paper, we determine the Assouad-Nagata dimension of every minor-closed metric. It is a common generalization of known results for the asymptotic dimension of $H$-minor free unweighted graphs and the Assouad-Nagata dimension of some 2-dimensional continuous spaces (e.g.\ complete Rienmannian surfaces with finite Euler genus) and their corollaries.

We consider a linear implicit-explicit (IMEX) time discretization of the Cahn-Hilliard equation with a source term, endowed with Dirichlet boundary conditions. For every time step small enough, we build an exponential attractor of the discrete-in-time dynamical system associated to the discretization. We prove that, as the time step tends to 0, this attractor converges for the symmmetric Hausdorff distance to an exponential attractor of the continuous-in-time dynamical system associated with the PDE. We also prove that the fractal dimension of the exponential attractor (and consequently, of the global attractor) is bounded by a constant independent of the time step. The results also apply to the classical Cahn-Hilliard equation with Neumann boundary conditions.

Navigating dynamic environments requires the robot to generate collision-free trajectories and actively avoid moving obstacles. Most previous works designed path planning algorithms based on one single map representation, such as the geometric, occupancy, or ESDF map. Although they have shown success in static environments, due to the limitation of map representation, those methods cannot reliably handle static and dynamic obstacles simultaneously. To address the problem, this paper proposes a gradient-based B-spline trajectory optimization algorithm utilizing the robot's onboard vision. The depth vision enables the robot to track and represent dynamic objects geometrically based on the voxel map. The proposed optimization first adopts the circle-based guide-point algorithm to approximate the costs and gradients for avoiding static obstacles. Then, with the vision-detected moving objects, our receding-horizon distance field is simultaneously used to prevent dynamic collisions. Finally, the iterative re-guide strategy is applied to generate the collision-free trajectory. The simulation and physical experiments prove that our method can run in real-time to navigate dynamic environments safely.

A superdirective antenna array has the potential to achieve an array gain proportional to the square of the number of antennas, making it of great value for future wireless communications. However, designing the superdirective beamformer while considering the complicated mutual-coupling effect is a practical challenge. Moreover, the superdirective antenna array is highly sensitive to excitation errors, especially when the number of antennas is large or the antenna spacing is very small, necessitating demanding and precise control over excitations. To address these problems, we first propose a novel superdirective beamforming approach based on the embedded element pattern (EEP), which contains the coupling information. The closed-form solution to the beamforming vector and the corresponding directivity factor are derived. This method relies on the beam coupling factors (BCFs) between the antennas, which are provided in closed form. To address the high sensitivity problem, we formulate a constrained optimization problem and propose an EEP-aided orthogonal complement-based robust beamforming (EEP-OCRB) algorithm. Full-wave simulation results validate our proposed methods. Finally, we build a prototype of a 5-dipole superdirective antenna array and conduct real-world experiments. The measurement results demonstrate the realization of the superdirectivity with our EEP-based method, as well as the robustness of the proposed EEP-OCRB algorithm to excitation errors.

H-score is a semi-quantitative method used to assess the presence and distribution of proteins in tissue samples by combining the intensity of staining and percentage of stained nuclei. It is widely used but time-consuming and can be limited in accuracy and precision. Computer-aided methods may help overcome these limitations and improve the efficiency of pathologists' workflows. In this work, we developed a model EndoNet for automatic calculation of H-score on histological slides. Our proposed method uses neural networks and consists of two main parts. The first is a detection model which predicts keypoints of centers of nuclei. The second is a H-score module which calculates the value of the H-score using mean pixel values of predicted keypoints. Our model was trained and validated on 1780 annotated tiles with a shape of 100x100 $\mu m$ and performed 0.77 mAP on a test dataset. Moreover, the model can be adjusted to a specific specialist or whole laboratory to reproduce the manner of calculating the H-score. Thus, EndoNet is effective and robust in the analysis of histology slides, which can improve and significantly accelerate the work of pathologists.

In a given generalized linear model with fixed effects, and under a specified loss function, what is the optimal estimator of the coefficients? We propose as a contender an ideal (oracle) shrinkage estimator, specifically, the Bayes estimator under the particular prior that assigns equal mass to every permutation of the true coefficient vector. We first study this ideal shrinker, showing some optimality properties in both frequentist and Bayesian frameworks by extending notions from Robbins's compound decision theory. To compete with the ideal estimator, taking advantage of the fact that it depends on the true coefficients only through their {\it empirical distribution}, we postulate a hierarchical Bayes model, that can be viewed as a nonparametric counterpart of the usual Gaussian hierarchical model. More concretely, the individual coefficients are modeled as i.i.d.~draws from a common distribution $\pi$, which is itself modeled as random and assigned a Polya tree prior to reflect indefiniteness. We show in simulations that the posterior mean of $\pi$ approximates well the empirical distribution of the true, {\it fixed} coefficients, effectively solving a nonparametric deconvolution problem. This allows the posterior estimates of the coefficient vector to learn the correct shrinkage pattern without parametric restrictions. We compare our method with popular parametric alternatives on the challenging task of gene mapping in the presence of polygenic effects. In this scenario, the regressors exhibit strong spatial correlation, and the signal consists of a dense polygenic component along with several prominent spikes. Our analysis demonstrates that, unlike standard high-dimensional methods such as ridge regression or Lasso, the proposed approach recovers the intricate signal structure, and results in better estimation and prediction accuracy in supporting simulations.

北京阿比特科技有限公司