亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Eye blinking detection in the wild plays an essential role in deception detection, driving fatigue detection, etc. Despite the fact that numerous attempts have already been made, the majority of them have encountered difficulties, such as the derived eye images having different resolutions as the distance between the face and the camera changes; or the requirement of a lightweight detection model to obtain a short inference time in order to perform in real-time. In this research, two problems are addressed: how the eye blinking detection model can learn efficiently from different resolutions of eye pictures in diverse conditions; and how to reduce the size of the detection model for faster inference time. We propose to utilize upsampling and downsampling the input eye images to the same resolution as one potential solution for the first problem, then find out which interpolation method can result in the highest performance of the detection model. For the second problem, although a recent spatiotemporal convolutional neural network used for eye blinking detection has a strong capacity to extract both spatial and temporal characteristics, it remains having a high number of network parameters, leading to high inference time. Therefore, using Depth-wise Separable Convolution rather than conventional convolution layers inside each branch is considered in this paper as a feasible solution.

相關內容

Recently, the generalized primal-dual (GPD) method was developed for saddle-point problems (SPPs) with a linear coupling operator. However, the coupling operator in many engineering applications is nonlinear. In this letter, we propose a generalized primal-dual correction method (GPD-CM) to handle SPPs with a nonlinear coupling operator. To achieve this, we customize the proximal matrix and corrective matrix by adjusting the values of regularization factors. By the unified framework, the convergence of GPD-CM is directly obtained. Numerical results on a SPP with an exponential coupling operator support theoretical analysis.

The Contrastive Language-Image Pre-training (CLIP) has recently shown remarkable generalization on "zero-shot" training and has applied to many downstream tasks. We explore the adaptation of CLIP to achieve a more efficient and generalized action recognition method. We propose that the key lies in explicitly modeling the motion cues flowing in video frames. To that end, we design a two-stream motion modeling block to capture motion and spatial information at the same time. And then, the obtained motion cues are utilized to drive a dynamic prompts learner to generate motion-aware prompts, which contain much semantic information concerning human actions. In addition, we propose a multimodal communication block to achieve a collaborative learning and further improve the performance. We conduct extensive experiments on HMDB-51, UCF-101, and Kinetics-400 datasets. Our method outperforms most existing state-of-the-art methods by a significant margin on "few-shot" and "zero-shot" training. We also achieve competitive performance on "closed-set" training with extremely few trainable parameters and additional computational costs.

We address the task of probabilistic anomaly attribution in the black-box regression setting, where the goal is to compute the probability distribution of the attribution score of each input variable, given an observed anomaly. The training dataset is assumed to be unavailable. This task differs from the standard XAI (explainable AI) scenario, since we wish to explain the anomalous deviation from a black-box prediction rather than the black-box model itself. We begin by showing that mainstream model-agnostic explanation methods, such as the Shapley values, are not suitable for this task because of their ``deviation-agnostic property.'' We then propose a novel framework for probabilistic anomaly attribution that allows us to not only compute attribution scores as the predictive mean but also quantify the uncertainty of those scores. This is done by considering a generative process for perturbations that counter-factually bring the observed anomalous observation back to normalcy. We introduce a variational Bayes algorithm for deriving the distributions of per variable attribution scores. To the best of our knowledge, this is the first probabilistic anomaly attribution framework that is free from being deviation-agnostic.

Deep neural networks are vulnerable to backdoor attacks (Trojans), where an attacker poisons the training set with backdoor triggers so that the neural network learns to classify test-time triggers to the attacker's designated target class. Recent work shows that backdoor poisoning induces over-fitting (abnormally large activations) in the attacked model, which motivates a general, post-training clipping method for backdoor mitigation, i.e., with bounds on internal-layer activations learned using a small set of clean samples. We devise a new such approach, choosing the activation bounds to explicitly limit classification margins. This method gives superior performance against peer methods for CIFAR-10 image classification. We also show that this method has strong robustness against adaptive attacks, X2X attacks, and on different datasets. Finally, we demonstrate a method extension for test-time detection and correction based on the output differences between the original and activation-bounded networks. The code of our method is online available.

We consider the problem of defending a hash table against a Byzantine attacker that is trying to degrade the performance of query, insertion and deletion operations. Our defense makes use of resource burning (RB) -- the the verifiable expenditure of network resources -- where the issuer of a request incurs some RB cost. Our algorithm, Depth Charge, charges RB costs for operations based on the depth of the appropriate object in the list that the object hashes to in the table. By appropriately setting the RB costs, our algorithm mitigates the impact of an attacker on the hash table's performance. In particular, in the presence of a significant attack, our algorithm incurs a cost which is asymptotically less that the attacker's cost.

Reasoning is a fundamental aspect of human intelligence that plays a crucial role in activities such as problem solving, decision making, and critical thinking. In recent years, large language models (LLMs) have made significant progress in natural language processing, and there is observation that these models may exhibit reasoning abilities when they are sufficiently large. However, it is not yet clear to what extent LLMs are capable of reasoning. This paper provides a comprehensive overview of the current state of knowledge on reasoning in LLMs, including techniques for improving and eliciting reasoning in these models, methods and benchmarks for evaluating reasoning abilities, findings and implications of previous research in this field, and suggestions on future directions. Our aim is to provide a detailed and up-to-date review of this topic and stimulate meaningful discussion and future work.

Data processing and analytics are fundamental and pervasive. Algorithms play a vital role in data processing and analytics where many algorithm designs have incorporated heuristics and general rules from human knowledge and experience to improve their effectiveness. Recently, reinforcement learning, deep reinforcement learning (DRL) in particular, is increasingly explored and exploited in many areas because it can learn better strategies in complicated environments it is interacting with than statically designed algorithms. Motivated by this trend, we provide a comprehensive review of recent works focusing on utilizing DRL to improve data processing and analytics. First, we present an introduction to key concepts, theories, and methods in DRL. Next, we discuss DRL deployment on database systems, facilitating data processing and analytics in various aspects, including data organization, scheduling, tuning, and indexing. Then, we survey the application of DRL in data processing and analytics, ranging from data preparation, natural language processing to healthcare, fintech, etc. Finally, we discuss important open challenges and future research directions of using DRL in data processing and analytics.

Video captioning is a challenging task that requires a deep understanding of visual scenes. State-of-the-art methods generate captions using either scene-level or object-level information but without explicitly modeling object interactions. Thus, they often fail to make visually grounded predictions, and are sensitive to spurious correlations. In this paper, we propose a novel spatio-temporal graph model for video captioning that exploits object interactions in space and time. Our model builds interpretable links and is able to provide explicit visual grounding. To avoid unstable performance caused by the variable number of objects, we further propose an object-aware knowledge distillation mechanism, in which local object information is used to regularize global scene features. We demonstrate the efficacy of our approach through extensive experiments on two benchmarks, showing our approach yields competitive performance with interpretable predictions.

Dense video captioning aims to generate text descriptions for all events in an untrimmed video. This involves both detecting and describing events. Therefore, all previous methods on dense video captioning tackle this problem by building two models, i.e. an event proposal and a captioning model, for these two sub-problems. The models are either trained separately or in alternation. This prevents direct influence of the language description to the event proposal, which is important for generating accurate descriptions. To address this problem, we propose an end-to-end transformer model for dense video captioning. The encoder encodes the video into appropriate representations. The proposal decoder decodes from the encoding with different anchors to form video event proposals. The captioning decoder employs a masking network to restrict its attention to the proposal event over the encoding feature. This masking network converts the event proposal to a differentiable mask, which ensures the consistency between the proposal and captioning during training. In addition, our model employs a self-attention mechanism, which enables the use of efficient non-recurrent structure during encoding and leads to performance improvements. We demonstrate the effectiveness of this end-to-end model on ActivityNet Captions and YouCookII datasets, where we achieved 10.12 and 6.58 METEOR score, respectively.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

北京阿比特科技有限公司