亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study episodic reinforcement learning (RL) in non-stationary linear kernel Markov decision processes (MDPs). In this setting, both the reward function and the transition kernel are linear with respect to the given feature maps and are allowed to vary over time, as long as their respective parameter variations do not exceed certain variation budgets. We propose the $\underline{\text{p}}$eriodically $\underline{\text{r}}$estarted $\underline{\text{o}}$ptimistic $\underline{\text{p}}$olicy $\underline{\text{o}}$ptimization algorithm (PROPO), which is an optimistic policy optimization algorithm with linear function approximation. PROPO features two mechanisms: sliding-window-based policy evaluation and periodic-restart-based policy improvement, which are tailored for policy optimization in a non-stationary environment. In addition, only utilizing the technique of sliding window, we propose a value-iteration algorithm. We establish dynamic upper bounds for the proposed methods and a matching minimax lower bound which shows the (near-) optimality of the proposed methods. To our best knowledge, PROPO is the first provably efficient policy optimization algorithm that handles non-stationarity.

相關內容

Deep Neural Networks (DNNs) outshine alternative function approximators in many settings thanks to their modularity in composing any desired differentiable operator. The formed parametrized functional is then tuned to solve a task at hand from simple gradient descent. This modularity comes at the cost of making strict enforcement of constraints on DNNs, e.g. from a priori knowledge of the task, or from desired physical properties, an open challenge. In this paper we propose the first provable affine constraint enforcement method for DNNs that requires minimal changes into a given DNN's forward-pass, that is computationally friendly, and that leaves the optimization of the DNN's parameter to be unconstrained i.e. standard gradient-based method can be employed. Our method does not require any sampling and provably ensures that the DNN fulfills the affine constraint on a given input space's region at any point during training, and testing. We coin this method POLICE, standing for Provably Optimal LInear Constraint Enforcement.

Reinforcementlearning(RL)folkloresuggeststhathistory-basedfunctionapproximationmethods,suchas recurrent neural nets or history-based state abstraction, perform better than their memory-less counterparts, due to the fact that function approximation in Markov decision processes (MDP) can be viewed as inducing a Partially observable MDP. However, there has been little formal analysis of such history-based algorithms, as most existing frameworks focus exclusively on memory-less features. In this paper, we introduce a theoretical framework for studying the behaviour of RL algorithms that learn to control an MDP using history-based feature abstraction mappings. Furthermore, we use this framework to design a practical RL algorithm and we numerically evaluate its effectiveness on a set of continuous control tasks.

In this paper, we present several new results on minimizing a nonsmooth and nonconvex function under a Lipschitz condition. Recent work shows that while the classical notion of Clarke stationarity is computationally intractable up to some sufficiently small constant tolerance, the randomized first-order algorithms find a $(\delta, \epsilon)$-Goldstein stationary point with the complexity bound of $\tilde{O}(\delta^{-1}\epsilon^{-3})$, which is independent of dimension $d \geq 1$~\citep{Zhang-2020-Complexity, Davis-2022-Gradient, Tian-2022-Finite}. However, the deterministic algorithms have not been fully explored, leaving open several problems in nonsmooth nonconvex optimization. Our first contribution is to demonstrate that the randomization is \textit{necessary} to obtain a dimension-independent guarantee, by proving a lower bound of $\Omega(d)$ for any deterministic algorithm that has access to both $1^{st}$ and $0^{th}$ oracles. Furthermore, we show that the $0^{th}$ oracle is \textit{essential} to obtain a finite-time convergence guarantee, by showing that any deterministic algorithm with only the $1^{st}$ oracle is not able to find an approximate Goldstein stationary point within a finite number of iterations up to sufficiently small constant parameter and tolerance. Finally, we propose a deterministic smoothing approach under the \textit{arithmetic circuit} model where the resulting smoothness parameter is exponential in a certain parameter $M > 0$ (e.g., the number of nodes in the representation of the function), and design a new deterministic first-order algorithm that achieves a dimension-independent complexity bound of $\tilde{O}(M\delta^{-1}\epsilon^{-3})$.

Non-parametric tests based on permutation, rotation or sign-flipping are examples of group-invariance tests. These tests test invariance of the null distribution under a set of transformations that has a group structure, in the algebraic sense. Such groups are often huge, which makes it computationally infeasible to test using the entire group. Hence, it is standard practice to test using a randomly sampled set of transformations from the group. This random sample still needs to be substantial to obtain good power and replicability. We improve upon the standard practice by using a well-designed subgroup of transformations instead of a random sample. The resulting subgroup-invariance test is still exact, as invariance under a group implies invariance under its subgroups. We illustrate this in a generalized location model and obtain fully replicable tests based the same number of transformations. We prove novel consistency results, which show that a well-designed subgroup-invariance test is consistent for lower signal-to-noise ratios than a test based on a random sample. For the special case of a normal location model and a particular design of the subgroup, we show that the power improvement is equivalent to the power difference between a Monte Carlo $Z$-test and a Monte Carlo $t$-test.

We introduce a new measure for the performance of online algorithms in Bayesian settings, where the input is drawn from a known prior, but the realizations are revealed one-by-one in an online fashion. Our new measure is called order-competitive ratio. It is defined as the worst case (over all distribution sequences) ratio between the performance of the best order-unaware and order-aware algorithms, and quantifies the loss that is incurred due to lack of knowledge of the arrival order. Despite the growing interest in the role of the arrival order on the performance of online algorithms, this loss has been overlooked thus far. We study the order-competitive ratio in the paradigmatic prophet inequality problem, for the two common objective functions of (i) maximizing the expected value, and (ii) maximizing the probability of obtaining the largest value; and with respect to two families of algorithms, namely (i) adaptive algorithms, and (ii) single-threshold algorithms. We provide tight bounds for all four combinations, with respect to deterministic algorithms. Our analysis requires new ideas and departs from standard techniques. In particular, our adaptive algorithms inevitably go beyond single-threshold algorithms. The results with respect to the order-competitive ratio measure capture the intuition that adaptive algorithms are stronger than single-threshold ones, and may lead to a better algorithmic advice than the classical competitive ratio measure.

In offline reinforcement learning (RL), a learner leverages prior logged data to learn a good policy without interacting with the environment. A major challenge in applying such methods in practice is the lack of both theoretically principled and practical tools for model selection and evaluation. To address this, we study the problem of model selection in offline RL with value function approximation. The learner is given a nested sequence of model classes to minimize squared Bellman error and must select among these to achieve a balance between approximation and estimation error of the classes. We propose the first model selection algorithm for offline RL that achieves minimax rate-optimal oracle inequalities up to logarithmic factors. The algorithm, ModBE, takes as input a collection of candidate model classes and a generic base offline RL algorithm. By successively eliminating model classes using a novel one-sided generalization test, ModBE returns a policy with regret scaling with the complexity of the minimally complete model class. In addition to its theoretical guarantees, it is conceptually simple and computationally efficient, amounting to solving a series of square loss regression problems and then comparing relative square loss between classes. We conclude with several numerical simulations showing it is capable of reliably selecting a good model class.

In many sequential decision-making problems (e.g., robotics control, game playing, sequential prediction), human or expert data is available containing useful information about the task. However, imitation learning (IL) from a small amount of expert data can be challenging in high-dimensional environments with complex dynamics. Behavioral cloning is a simple method that is widely used due to its simplicity of implementation and stable convergence but doesn't utilize any information involving the environment's dynamics. Many existing methods that exploit dynamics information are difficult to train in practice due to an adversarial optimization process over reward and policy approximators or biased, high variance gradient estimators. We introduce a method for dynamics-aware IL which avoids adversarial training by learning a single Q-function, implicitly representing both reward and policy. On standard benchmarks, the implicitly learned rewards show a high positive correlation with the ground-truth rewards, illustrating our method can also be used for inverse reinforcement learning (IRL). Our method, Inverse soft-Q learning (IQ-Learn) obtains state-of-the-art results in offline and online imitation learning settings, significantly outperforming existing methods both in the number of required environment interactions and scalability in high-dimensional spaces, often by more than 3x.

For first-order smooth optimization, the research on the acceleration phenomenon has a long-time history. Until recently, the mechanism leading to acceleration was not successfully uncovered by the gradient correction term and its equivalent implicit-velocity form. Furthermore, based on the high-resolution differential equation framework with the corresponding emerging techniques, phase-space representation and Lyapunov function, the squared gradient norm of Nesterov's accelerated gradient descent (\texttt{NAG}) method at an inverse cubic rate is discovered. However, this result cannot be directly generalized to composite optimization widely used in practice, e.g., the linear inverse problem with sparse representation. In this paper, we meticulously observe a pivotal inequality used in composite optimization about the step size $s$ and the Lipschitz constant $L$ and find that it can be improved tighter. We apply the tighter inequality discovered in the well-constructed Lyapunov function and then obtain the proximal subgradient norm minimization by the phase-space representation, regardless of gradient-correction or implicit-velocity. Furthermore, we demonstrate that the squared proximal subgradient norm for the class of iterative shrinkage-thresholding algorithms (ISTA) converges at an inverse square rate, and the squared proximal subgradient norm for the class of faster iterative shrinkage-thresholding algorithms (FISTA) is accelerated to convergence at an inverse cubic rate.

We present a novel method in this work to address the problem of multi-vehicle conflict resolution in highly constrained spaces. A high-fidelity optimal control problem is formulated to incorporate nonlinear, non-holonomic vehicle dynamics and exact collision avoidance constraints. Despite being high-dimensional and non-convex, we can obtain an optimal solution by learning configuration strategies with reinforcement learning (RL) in a simplified discrete environment and approaching high-quality initial guesses progressively. The simulation results show that our method can explore efficient actions to resolve conflicts in confined space and generate dexterous maneuvers that are both collision-free and kinematically feasible.

Deep reinforcement learning algorithms can perform poorly in real-world tasks due to the discrepancy between source and target environments. This discrepancy is commonly viewed as the disturbance in transition dynamics. Many existing algorithms learn robust policies by modeling the disturbance and applying it to source environments during training, which usually requires prior knowledge about the disturbance and control of simulators. However, these algorithms can fail in scenarios where the disturbance from target environments is unknown or is intractable to model in simulators. To tackle this problem, we propose a novel model-free actor-critic algorithm -- namely, state-conservative policy optimization (SCPO) -- to learn robust policies without modeling the disturbance in advance. Specifically, SCPO reduces the disturbance in transition dynamics to that in state space and then approximates it by a simple gradient-based regularizer. The appealing features of SCPO include that it is simple to implement and does not require additional knowledge about the disturbance or specially designed simulators. Experiments in several robot control tasks demonstrate that SCPO learns robust policies against the disturbance in transition dynamics.

北京阿比特科技有限公司