For modern gradient-based optimization, a developmental landmark is Nesterov's accelerated gradient descent method, which is proposed in [Nesterov, 1983], so shorten as Nesterov-1983. Afterward, one of the important progresses is its proximal generalization, named the fast iterative shrinkage-thresholding algorithm (FISTA), which is widely used in image science and engineering. However, it is unknown whether both Nesterov-1983 and FISTA converge linearly on the strongly convex function, which has been listed as the open problem in the comprehensive review [Chambolle and Pock, 2016, Appendix B]. In this paper, we answer this question by the use of the high-resolution differential equation framework. Along with the phase-space representation previously adopted, the key difference here in constructing the Lyapunov function is that the coefficient of the kinetic energy varies with the iteration. Furthermore, we point out that the linear convergence of both the two algorithms above has no dependence on the parameter $r$ on the strongly convex function. Meanwhile, it is also obtained that the proximal subgradient norm converges linearly.
Pan-sharpening, as one of the most commonly used techniques in remote sensing systems, aims to inject spatial details from panchromatic images into multispectral images (MS) to obtain high-resolution multispectral images. Since deep learning has received widespread attention because of its powerful fitting ability and efficient feature extraction, a variety of pan-sharpening methods have been proposed to achieve remarkable performance. However, current pan-sharpening methods usually require the paired panchromatic (PAN) and MS images as input, which limits their usage in some scenarios. To address this issue, in this paper we observe that the spatial details from PAN images are mainly high-frequency cues, i.e., the edges reflect the contour of input PAN images. This motivates us to develop a PAN-agnostic representation to store some base edges, so as to compose the contour for the corresponding PAN image via them. As a result, we can perform the pan-sharpening task with only the MS image when inference. To this end, a memory-based network is adapted to extract and memorize the spatial details during the training phase and is used to replace the process of obtaining spatial information from PAN images when inference, which is called Memory-based Spatial Details Network (MSDN). Finally, we integrate the proposed MSDN module into the existing deep learning-based pan-sharpening methods to achieve an end-to-end pan-sharpening network. With extensive experiments on the Gaofen1 and WorldView-4 satellites, we verify that our method constructs good spatial details without PAN images and achieves the best performance. The code is available at //github.com/Zhao-Tian-yi/Learning-to-Pan-sharpening-with-Memories-of-Spatial-Details.git.
We investigate trade-offs in static and dynamic evaluation of hierarchical queries with arbitrary free variables. In the static setting, the trade-off is between the time to partially compute the query result and the delay needed to enumerate its tuples. In the dynamic setting, we additionally consider the time needed to update the query result under single-tuple inserts or deletes to the database. Our approach observes the degree of values in the database and uses different computation and maintenance strategies for high-degree (heavy) and low-degree (light) values. For the latter it partially computes the result, while for the former it computes enough information to allow for on-the-fly enumeration. We define the preprocessing time, the update time, and the enumeration delay as functions of the light/heavy threshold. By appropriately choosing this threshold, our approach recovers a number of prior results when restricted to hierarchical queries. We show that for a restricted class of hierarchical queries, our approach achieves worst-case optimal update time and enumeration delay conditioned on the Online Matrix-Vector Multiplication Conjecture.
Friction-induced vibration (FIV) is very common in engineering areas. Analysing the dynamic behaviour of systems containing a multiple-contact point frictional interface is an important topic. However, accurately simulating nonsmooth/discontinuous dynamic behaviour due to friction is challenging. This paper presents a new physics-informed neural network approach for solving nonsmooth friction-induced vibration or friction-involved vibration problems. Compared with schemes of the conventional time-stepping methodology, in this new computational framework, the theoretical formulations of nonsmooth multibody dynamics are transformed and embedded in the training process of the neural network. Major findings include that the new framework not only can perform accurate simulation of nonsmooth dynamic behaviour, but also eliminate the need for extremely small time steps typically associated with the conventional time-stepping methodology for multibody systems, thus saving much computation work while maintaining high accuracy. Specifically, four kinds of high-accuracy PINN-based methods are proposed: (1) single PINN; (2) dual PINN; (3) advanced single PINN; (4) advanced dual PINN. Two typical dynamics problems with nonsmooth contact are tested: one is a 1-dimensional contact problem with stick-slip, and the other is a 2-dimensional contact problem considering separation-reattachment and stick-slip oscillation. Both single and dual PINN methods show their advantages in dealing with the 1-dimensional stick-slip problem, which outperforms conventional methods across friction models that are difficult to simulate by the conventional time-stepping method. For the 2-dimensional problem, the capability of the advanced single and advanced dual PINN on accuracy improvement is shown, and they provide good results even in the cases when conventional methods fail.
This article revisits the fundamental problem of parameter selection for Gaussian process interpolation. By choosing the mean and the covariance functions of a Gaussian process within parametric families, the user obtains a family of Bayesian procedures to perform predictions about the unknown function, and must choose a member of the family that will hopefully provide good predictive performances. We base our study on the general concept of scoring rules, which provides an effective framework for building leave-one-out selection and validation criteria, and a notion of extended likelihood criteria based on an idea proposed by Fasshauer and co-authors in 2009, which makes it possible to recover standard selection criteria such as, for instance, the generalized cross-validation criterion. Under this setting, we empirically show on several test problems of the literature that the choice of an appropriate family of models is often more important than the choice of a particular selection criterion (e.g., the likelihood versus a leave-one-out selection criterion). Moreover, our numerical results show that the regularity parameter of a Mat{\'e}rn covariance can be selected effectively by most selection criteria.
The idea of the restricted mean has been used to establish a significantly improved version of Markov's inequality that does not require any new assumptions. The result immediately extends on Chebyshev's inequalities and Chernoff's bound. The improved Markov inequality yields a bound that is hundreds or thousands of times more accurate than the original Markov bound for high quantiles in the most prevalent and diverse situations. The Markov inequality benefits from being model-independent, and the long-standing issue of its imprecision is solved. Practically speaking, avoidance of model risk is decisive when multiple competing models are present in a real-world situation.
Many research explore how well computers are able to examine emotions displayed by humans and use that data to perform different tasks. However, there have been very few research which evaluate the computers ability to generate emotion classification information in an attempt to help the user make decisions or perform tasks. This is a crucial area to explore as it is paramount to the two way communication between humans and computers. This research conducted an experiment to investigate the impact of different uncertainty information displays of emotion classification on the human decision making process. Results show that displaying more uncertainty information can help users to be more confident when making decisions.
Moderate calibration, the expected event probability among observations with predicted probability z being equal to z, is a desired property of risk prediction models. Current graphical and numerical techniques for evaluating moderate calibration of risk prediction models are mostly based on smoothing or grouping the data. As well, there is no widely accepted inferential method for the null hypothesis that a model is moderately calibrated. In this work, we discuss recently-developed, and propose novel, methods for the assessment of moderate calibration for binary responses. The methods are based on the limiting distributions of functions of standardized partial sums of prediction errors converging to the corresponding laws of Brownian motion. The novel method relies on well-known properties of the Brownian bridge which enables joint inference on mean and moderate calibration, leading to a unified 'bridge' test for detecting miscalibration. Simulation studies indicate that the bridge test is more powerful, often substantially, than the alternative test. As a case study we consider a prediction model for short-term mortality after a heart attack, where we provide suggestions on graphical presentation and the interpretation of results. Moderate calibration can be assessed without requiring arbitrary grouping of data or using methods that require tuning of parameters.
In a variety of application areas, there is interest in assessing evidence of differences in the intensity of event realizations between groups. For example, in cancer genomic studies collecting data on rare variants, the focus is on assessing whether and how the variant profile changes with the disease subtype. Motivated by this application, we develop multiresolution nonparametric Bayes tests for differential mutation rates across groups. The multiresolution approach yields fast and accurate detection of spatial clusters of rare variants, and our nonparametric Bayes framework provides great flexibility for modeling the intensities of rare variants. Some theoretical properties are also assessed, including weak consistency of our Dirichlet Process-Poisson-Gamma mixture over multiple resolutions. Simulation studies illustrate excellent small sample properties relative to competitors, and we apply the method to detect rare variants related to common variable immunodeficiency from whole exome sequencing data on 215 patients and over 60,027 control subjects.
With the escalated demand of human-machine interfaces for intelligent systems, development of gaze controlled system have become a necessity. Gaze, being the non-intrusive form of human interaction, is one of the best suited approach. Appearance based deep learning models are the most widely used for gaze estimation. But the performance of these models is entirely influenced by the size of labeled gaze dataset and in effect affects generalization in performance. This paper aims to develop a semi-supervised contrastive learning framework for estimation of gaze direction. With a small labeled gaze dataset, the framework is able to find a generalized solution even for unseen face images. In this paper, we have proposed a new contrastive loss paradigm that maximizes the similarity agreement between similar images and at the same time reduces the redundancy in embedding representations. Our contrastive regression framework shows good performance in comparison to several state of the art contrastive learning techniques used for gaze estimation.
Although measuring held-out accuracy has been the primary approach to evaluate generalization, it often overestimates the performance of NLP models, while alternative approaches for evaluating models either focus on individual tasks or on specific behaviors. Inspired by principles of behavioral testing in software engineering, we introduce CheckList, a task-agnostic methodology for testing NLP models. CheckList includes a matrix of general linguistic capabilities and test types that facilitate comprehensive test ideation, as well as a software tool to generate a large and diverse number of test cases quickly. We illustrate the utility of CheckList with tests for three tasks, identifying critical failures in both commercial and state-of-art models. In a user study, a team responsible for a commercial sentiment analysis model found new and actionable bugs in an extensively tested model. In another user study, NLP practitioners with CheckList created twice as many tests, and found almost three times as many bugs as users without it.